forked from btcsuite/btcd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhashcache_test.go
198 lines (165 loc) · 4.98 KB
/
hashcache_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (c) 2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"math/rand"
"testing"
"time"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
)
func init() {
rand.Seed(time.Now().Unix())
}
// genTestTx creates a random transaction for uses within test cases.
func genTestTx() (*wire.MsgTx, *MultiPrevOutFetcher, error) {
tx := wire.NewMsgTx(2)
tx.Version = rand.Int31()
prevOuts := NewMultiPrevOutFetcher(nil)
numTxins := 1 + rand.Intn(11)
for i := 0; i < numTxins; i++ {
randTxIn := wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Index: uint32(rand.Int31()),
},
Sequence: uint32(rand.Int31()),
}
_, err := rand.Read(randTxIn.PreviousOutPoint.Hash[:])
if err != nil {
return nil, nil, err
}
tx.TxIn = append(tx.TxIn, &randTxIn)
prevOuts.AddPrevOut(
randTxIn.PreviousOutPoint, &wire.TxOut{},
)
}
numTxouts := 1 + rand.Intn(11)
for i := 0; i < numTxouts; i++ {
randTxOut := wire.TxOut{
Value: rand.Int63(),
PkScript: make([]byte, rand.Intn(30)),
}
if _, err := rand.Read(randTxOut.PkScript); err != nil {
return nil, nil, err
}
tx.TxOut = append(tx.TxOut, &randTxOut)
}
return tx, prevOuts, nil
}
// TestHashCacheAddContainsHashes tests that after items have been added to the
// hash cache, the ContainsHashes method returns true for all the items
// inserted. Conversely, ContainsHashes should return false for any items
// _not_ in the hash cache.
func TestHashCacheAddContainsHashes(t *testing.T) {
t.Parallel()
cache := NewHashCache(10)
var (
err error
randPrevOuts *MultiPrevOutFetcher
)
prevOuts := NewMultiPrevOutFetcher(nil)
// First, we'll generate 10 random transactions for use within our
// tests.
const numTxns = 10
txns := make([]*wire.MsgTx, numTxns)
for i := 0; i < numTxns; i++ {
txns[i], randPrevOuts, err = genTestTx()
if err != nil {
t.Fatalf("unable to generate test tx: %v", err)
}
prevOuts.Merge(randPrevOuts)
}
// With the transactions generated, we'll add each of them to the hash
// cache.
for _, tx := range txns {
cache.AddSigHashes(tx, prevOuts)
}
// Next, we'll ensure that each of the transactions inserted into the
// cache are properly located by the ContainsHashes method.
for _, tx := range txns {
txid := tx.TxHash()
if ok := cache.ContainsHashes(&txid); !ok {
t.Fatalf("txid %v not found in cache but should be: ",
txid)
}
}
randTx, _, err := genTestTx()
if err != nil {
t.Fatalf("unable to generate tx: %v", err)
}
// Finally, we'll assert that a transaction that wasn't added to the
// cache won't be reported as being present by the ContainsHashes
// method.
randTxid := randTx.TxHash()
if ok := cache.ContainsHashes(&randTxid); ok {
t.Fatalf("txid %v wasn't inserted into cache but was found",
randTxid)
}
}
// TestHashCacheAddGet tests that the sighashes for a particular transaction
// are properly retrieved by the GetSigHashes function.
func TestHashCacheAddGet(t *testing.T) {
t.Parallel()
cache := NewHashCache(10)
// To start, we'll generate a random transaction and compute the set of
// sighashes for the transaction.
randTx, prevOuts, err := genTestTx()
if err != nil {
t.Fatalf("unable to generate tx: %v", err)
}
sigHashes := NewTxSigHashes(randTx, prevOuts)
// Next, add the transaction to the hash cache.
cache.AddSigHashes(randTx, prevOuts)
// The transaction inserted into the cache above should be found.
txid := randTx.TxHash()
cacheHashes, ok := cache.GetSigHashes(&txid)
if !ok {
t.Fatalf("tx %v wasn't found in cache", txid)
}
// Finally, the sighashes retrieved should exactly match the sighash
// originally inserted into the cache.
if *sigHashes != *cacheHashes {
t.Fatalf("sighashes don't match: expected %v, got %v",
spew.Sdump(sigHashes), spew.Sdump(cacheHashes))
}
}
// TestHashCachePurge tests that items are able to be properly removed from the
// hash cache.
func TestHashCachePurge(t *testing.T) {
t.Parallel()
cache := NewHashCache(10)
var (
err error
randPrevOuts *MultiPrevOutFetcher
)
prevOuts := NewMultiPrevOutFetcher(nil)
// First we'll start by inserting numTxns transactions into the hash cache.
const numTxns = 10
txns := make([]*wire.MsgTx, numTxns)
for i := 0; i < numTxns; i++ {
txns[i], randPrevOuts, err = genTestTx()
if err != nil {
t.Fatalf("unable to generate test tx: %v", err)
}
prevOuts.Merge(randPrevOuts)
}
for _, tx := range txns {
cache.AddSigHashes(tx, prevOuts)
}
// Once all the transactions have been inserted, we'll purge them from
// the hash cache.
for _, tx := range txns {
txid := tx.TxHash()
cache.PurgeSigHashes(&txid)
}
// At this point, none of the transactions inserted into the hash cache
// should be found within the cache.
for _, tx := range txns {
txid := tx.TxHash()
if ok := cache.ContainsHashes(&txid); ok {
t.Fatalf("tx %v found in cache but should have "+
"been purged: ", txid)
}
}
}