Skip to content

An all-in-one Deep Learning toolkit for image classification to fine-tuning pretrained models using MXNet.

Notifications You must be signed in to change notification settings

BenJamesbabala/mxnet-finetuner

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mxnet-finetuner

An all-in-one Deep Learning toolkit for image classification to fine-tuning pretrained models using MXNet.

Prerequisites

  • docker
  • docker-compose
  • jq
  • wget or curl

When using NVIDIA GPUs

  • nvidia-docker

Setup

$ git clone https://github.com/knjcode/mxnet-finetuner
$ cd mxnet-finetuner
$ bash setup.sh

Example usage

1. Arrange images into their respective directories

A training data directory (images/train) and validation data directory (images/valid) should containing one subdirectory per image class.

For example, arrange training data and validation data as follows.

images/
    train/
        airplanes/
            airplane001.jpg
            airplane002.jpg
            ...
        watch/
            watch001.jpg
            watch002.jpg
            ...
    valid/
        airplanes/
            airplane101.jpg
            airplane102.jpg
            ...
        watch/
            watch101.jpg
            watch102.jpg
            ...

2. Edit config.yml

Edit config.yml as you like.

For example

common:
  num_threads: 16
  gpus: 0,1,2,3

data:
  quality: 95
  shuffle: 1
  center_crop: 0

finetune:
  pretrained_models:
    - imagenet1k-resnet-50
  optimizers:
    - sgd
  num_epochs: 30
  lr: 0.0001
  lr_factor: 0.1
  lr_step_epochs: 30
  mom: 0.9
  wd: 0.00001
  batch_size: 10

3. Do Fine-tuning

$ docker-compose run finetuner

mxnet-finetuner will automatically execute the followings according to config.yml.

  • Create RecordIO data from images
  • Download pretrained models
  • Replace the last fully-connected layer with a new one that outputs the desired number of classes
  • Data augumentaion
  • Do Fine-tuning
  • Make training accuracy graph
  • Make confusion matrix
  • Upload training accuracy graph and confusion matrix to Slack

Training accuracy graph and/or confusion matrix are save at logs/ directory.
Trained models are save at model/ directory.

Trained models are saved with the following file name for each epoch.

model/201705292200-imagenet1k-nin-sgd-0000.params

If you want to upload results to Slack, set SLACK_API_TOKEN environment variable and edit config.yml as below.

finetune:
  train_accuracy_graph_slack_upload: 1
test:
  confusion_matrix_slack_upload: 1

4. Predict with trained models

Select the trained model and epoch you want to use for testing and edit config.yml

If you want to use model/201705292200-imagenet1k-nin-sgd-0001.params, edit config.yml as blow.

test:
  model_prefix: 201705292200-imagenet1k-nin-sgd
  model_epoch: 1

When you want to use the latest highest validation accuracy trained model, edit config.yml as below.

test:
  use_latest: 1

If set this option, model_prefix and model_epoch are ignored.

When you are done, you can predict with the following command

$ docker-compose run finetuner test

Predict result and classification report and/or confusion matrix are save at logs/ directory.

Available pretrained models

Classification accuracy of available pretrained models. (Datasets are ImageNet1K, ImageNet11K and Place365 Challenge)

Please note that the following results are calculated with different datasets.

model Top-1 Accuracy Top-5 Accuracy download size model size (MXNet) dataset image shape
CaffeNet 54.5% 78.3% 233MB 9.3MB ImageNet1K 227x227
SqueezeNet 55.4% 78.8% 4.8MB 4.8MB ImageNet1K 227x227
NIN 58.8% 81.3% 30MB 30MB ImageNet1K 224x224
ResNet-18 69.5% 89.1% 45MB 43MB ImageNet1K 224x224
VGG16 71.0% 89.8% 528MB 58MB ImageNet1K 224x224
VGG19 71.0% 89.8% 549MB 78MB ImageNet1K 224x224
Inception-BN 72.5% 90.8% 44MB 40MB ImageNet1K 224x224
ResNet-34 72.8% 91.1% 84MB 82MB ImageNet1K 224x224
ResNet-50 75.6% 92.8% 98MB 90MB ImageNet1K 224x224
ResNet-101 77.3% 93.4% 171MB 163MB ImageNet1K 224x224
ResNet-152 77.8% 93.6% 231MB 223MB ImageNet1K 224x224
ResNet-200 77.9% 93.8 248MB 240MB ImageNet1K 224x224
Inception-v3 76.9% 93.3% 92MB 84MB ImageNet1K 299x299
ResNeXt-50 76.9% 93.3% 96MB 89MB ImageNet1K 224x224
ResNeXt-101 78.3% 94.1% 170MB 162MB ImageNet1K 224x224
ResNeXt-101-64x4d 79.1% 94.3% 320MB 312MB ImageNet1K 224x224
ResNet-152 (imagenet11k) 41.6% - 311MB 223MB ImageNet11K 224x224
ResNet-50 (Place365 Challenge) 31.1% - 181MB 90MB Place365ch 224x224
ResNet-152 (Place365 Challenge) 33.6% - 313MB 223MB Place365ch 224x224
  • The download size is the file size when first downloading pretrained model.
  • The model size is the file size to be saved after fine-tuning.

To use these pretrained models, specify the following pretrained_models name in config.yml.

model pretrained_models names
CaffeNet imagenet1k-caffenet
SqueezeNet imagenet1k-squeezenet
NIN imagenet1k-nin
VGG16 imagenet1k-vgg16
VGG19 imagenet1k-vgg19
Inception-BN imagenet1k-inception-bn
ResNet-18 imagenet1k-resnet-18
ResNet-34 imagenet1k-resnet-34
ResNet-50 imagenet1k-resnet-50
ResNet-101 imagenet1k-resnet-101
ResNet-152 imagenet1k-resnet-152
ResNet-152 (imagenet11k) imagenet11k-resnet-152
ResNet-200 imagenet1k-resnet-200
Inception-v3 imagenet1k-inception-v3
ResNeXt-50 imagenet1k-resnext-50
ResNeXt-101 imagenet1k-resnext-101
ResNeXt-101-64x4d imagenet1k-resnext-101-64x4d
ResNet-50 (Place365 Challenge) imagenet11k-place365ch-resnet-50
ResNet-152 (Place365 Challenge) imagenet11k-place365ch-resnet-152

Benchmark

Speed (images/sec)

  • dataset: 8000 samles
  • batch size: 10, 20, 30, 40
  • Optimizer: SGD
  • GPU: Maxwell TITAN X (12GiB Memory)
model batch size 10 batch size 20 batch size 30 batch size 40
CaffeNet 755.64 1054.47 1019.24 1077.63
SqueezeNet 458.27 579.37 534.68 549.55
NIN 443.88 516.21 612.83 656.14
ResNet-18 257.40 308.30 331.57 339.09
ResNet-34 149.88 182.69 201.75 207.49
Inception-BN 147.60 183.82 193.74 203.86
ResNet-50 88.55 102.44 109.98 111.04
Inception-v3 67.11 75.90 80.67 82.34
VGG16 56.38 58.01 59.80 59.35
ResNet-101 53.42 63.28 68.14 68.35
VGG19 45.02 46.88 48.62 48.28
ResNet-152 37.88 44.89 48.48 48.62
ResNet-200 22.58 25.61 27.17 27.32
ResNeXt-50 53.30 64.40 71.07 72.96
ResNeXt-101 31.76 39.56 42.90 43.99
ResNeXt-101-64x4d 18.22 23.08 out of memory out of memory

Memory usage (MiB)

  • dataset: 8000 samples
  • batch size: 10, 20, 30, 40
  • Optimizer: SGD
  • GPU: Maxwell TITAN X (12GiB GPU Memory)
model batch size 10 batch size 20 batch size 30 batch size 40 Reference accuracy
(imagenet1k Top-5)
CaffeNet 430 496 631 716 78.3%
SqueezeNet 608 937 1331 1672 78.8%
NIN 650 902 1062 1222 81.3%
ResNet-18 814 1163 1497 1853 88.7%
ResNet-34 1127 1619 2094 2598 91.0%
Inception-BN 1007 1569 2212 2772 90.8%
ResNet-50 1875 3080 4265 5483 92.6%
Inception-v3 2075 3509 4944 6383 93.3%
VGG16 1738 2960 4751 5977 89.8%
ResNet-101 2791 4576 6341 8158 93.3%
VGG19 1920 3242 5133 6458 89.8%
ResNet-152 3790 6296 8777 11330 93.1%
ResNet-200 2051 2769 3471 4201 unknown
ResNeXt-50 2248 3863 5468 7089 93.3%
ResNeXt-101 3350 5749 8126 10539 94.1%
ResNeXt-101-64x4d 5140 8679 out of memory out of memory 94.3%

Available optimizers

  • SGD
  • DCASGD
  • NAG
  • SGLD
  • Adam
  • AdaGrad
  • RMSProp
  • AdaDelta
  • Ftrl
  • Adamax
  • Nadam

To use these optimizers, specify the optimizer name in lowercase in config.yml.

Utilities

util/counter.sh

Count the number of files in each subdirectory.

$ util/counter.sh testdir
testdir contains 4 directories
Leopards    197
Motorbikes  198
airplanes   199
watch       200

util/move_images.sh

Move the specified number of jpeg images from the target directory to the output directory while maintaining the directory structure.

$ util/move_images.sh 20 testdir newdir
processing Leopards
processing Motorbikes
processing airplanes
processing watch
$ util/counter.sh newdir
newdir contains 4 directories
Leopards    20
Motorbikes  20
airplanes   20
watch       20

Prepare sample images for fine-tuning

Download Caltech 101 dataset, and split part of it into the example_images directory.

$ util/caltech101_prepare.sh
  • example_images/train is train set of 60 images for each classes
  • example_images/valid is validation set of 20 images for each classes
  • example_imags/test is test set of 20 images for each classes
$ util/counter.sh example_images/train
example_images/train contains 10 directories
Faces       60
Leopards    60
Motorbikes  60
airplanes   60
bonsai      60
car_side    60
chandelier  60
hawksbill   60
ketch       60
watch       60

With this data you can immediately try fine-tuning.

$ util/caltech101_prepare.sh
$ rm -rf images
$ mv exmaple_images images
$ docker-compose run finetuner

Misc

Use DenseNet

ImageNet pretrained DenseNet-169 model is introduced on A MXNet implementation of DenseNet with BC structure.

You can use this model as below

Download parameter and symbol files

densenet-imagenet-169-0-0125.params https://drive.google.com/open?id=0B_M7XF_l0CzXX3V3WXJoUnNKZFE

densenet-imagenet-169-0-symbol.json https://raw.githubusercontent.com/bruinxiong/densenet.mxnet/master/densenet-imagenet-169-0-symbol.json

Rearrange downloaded files

Change the name of the downloaded files and store it as below

model/imagenet1k-densenet-169-0000.params
model/imagenet1k-densenet-169-symbol.json

Modify config

To use DenseNet-169 pretrained models, specify the imagenet1k-densenet-169 in config.yml.

Try image classification with jupyter notebook

$ docker-compose run --service-ports finetuner jupyter

Please note that the --service-port option is required

Replace the IP address of the displayed URL with the IP address of the host machine and access it from the browser.

Open the classify_example/classify_example.ipynb and try out the image classification sample using the VGG-16 pretrained model pretrained with ImageNet.

config.yml options

common settings

common:
  num_threads: 4
  # gpus: 0  # list of gpus to run, e.g. 0 or 0,2,5.

data settings

train, validation and test RecordIO data generation settings.

mxnet-finetuner pack the image files into a recordIO file for increased performance.

data:
  quality: 95
  shuffle: 1
  center_crop: 0
  # use_japanese_label: 1

finetune settings

finetune:
  pretrained_models:  # the pretrained models
    - imagenet1k-nin
    # - imagenet1k-inception-v3
    # - imagenet1k-vgg16
    # - imagenet1k-resnet-50
    # - imagenet11k-resnet-152
    # - imagenet1k-resnext-101
    # etc
  optimizers:  # the optimizer types
    - sgd
    # optimizers: sgd, dcasgd, nag, sgld, adam, adagrad, rmsprop, adadelta, ftrl, adamax, nadam
  num_epochs: 10  # max num of epochs
  # load_epoch: 0  # specify when using user fine-tuned model
  lr: 0.0001  # initial learning rate
  lr_factor: 0.1  # the ratio to reduce lr on each step
  lr_step_epochs: 10  # the epochs to reduce the lr, e.g. 30,60
  mom: 0.9  # momentum for sgd
  wd: 0.00001  # weight decay for sgd
  batch_size: 10  # the batch size
  disp_batches: 10  # show progress for every n batches
  # top_k: 0  # report the top-k accuracy. 0 means no report.
  # random_crop: 0  # if or not randomly crop the image
  # random_mirror: 0  # if or not randomly flip horizontally
  # max_random_h: 0  # max change of hue, whose range is [0, 180]
  # max_random_s: 0  # max change of saturation, whose range is [0, 255]
  # max_random_l: 0  # max change of intensity, whose range is [0, 255]
  # max_random_aspect_ratio: 0  # max change of aspect ratio, whose range is [0, 1]
  # max_random_rotate_angle: 0  # max angle to rotate, whose range is [0, 360]
  # max_random_shear_ratio: 0  # max ratio to shear, whose range is [0, 1]
  # max_random_scale: 1  # max ratio to scale
  # min_random_scale: 1  # min ratio to scale, should >= img_size/input_shape. otherwise use --pad-size
  # rgb_mean: '123.68,116.779,103.939'  # a tuple of size 3 for the mean rgb
  # monitor: 0  # log network parameters every N iters if larger than 0
  # pad_size: 0  # padding the input image
  auto_test: 1  # if or not test with validation data after fine-tuneing is completed
  train_accuracy_graph_output: 1
  # train_accuracy_graph_fontsize: 12
  # train_accuracy_graph_figsize: 8,6
  # train_accuracy_graph_slack_upload: 1
  # train_accuracy_graph_slack_channels:
  #   - general

test settings

test:
  use_latest: 1  # Use last trained model. If set this option, model_prefix and model_epoch are ignored
  model_prefix: 201705292200-imagenet1k-nin-sgd
  model_epoch: 1
  # model_epoch_up_to: 10  # test from model_epoch to model_epoch_up_to respectively
  test_batch_size: 10
  # top_k: 10
  classification_report_output: 1
  # classification_report_digits: 3
  confusion_matrix_output: 1
  # confusion_matrix_fontsize: 12
  # confusion_matrix_figsize: 16,12
  # confusion_matrix_slack_upload: 1
  # confusion_matrix_slack_channels:
  #   - general

Acknowledgement

Licnese

Apache-2.0 license.

About

An all-in-one Deep Learning toolkit for image classification to fine-tuning pretrained models using MXNet.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 88.7%
  • Python 5.8%
  • Shell 5.3%
  • Other 0.2%