Skip to content

A simple VITS HTTP API, developed by extending Moegoe with additional features.

License

Notifications You must be signed in to change notification settings

Artrajz/vits-simple-api

Repository files navigation

vits-simple-api

Simply call the vits api


English|中文文档

Feature

  • VITS text-to-speech
  • VITS voice conversion
  • HuBert-soft VITS
  • W2V2 VITS / emotional-vits dimensional emotion model
  • Support for loading multiple models
  • Automatic language recognition and processing,set the scope of language type recognition according to model's cleaner,support for custom language type range
  • Customize default parameters
  • Long text batch processing
  • GPU accelerated inference
  • SSML (Speech Synthesis Markup Language) work in progress...
Update Logs

2023.6.5

Replace the library used for audio encoding, add support for the FLAC format, and enhance support for reading simple mathematical formulas in Chinese.

2023.5.24

Added api dimensional_emotion,load mutiple npy from folder.Docker add linux/arm64 and linux/arm64/v8 platforms

2023.5.15

Added english_cleaner. To use it, you need to install espeak separately.

2023.5.12

Added support for SSML, but still needs improvement. Refactored some functions and changed "speaker_id" to "id" in hubert_vits.

2023.5.2

Added support for the w2v2-vits/emotional-vits model, updated the speakers mapping table, and added support for the languages corresponding to the model.

2023.4.23

Add API Key authentication, disabled by default, needs to be enabled in config.py.

2023.4.17

Added the feature that the cleaner for a single language needs to be annotated to clean, and added GPU acceleration for inference, but the GPU inference environment needs to be manually installed.

2023.4.12

Renamed the project from MoeGoe-Simple-API to vits-simple-api, added support for batch processing of long texts, and added a segment threshold "max" for long texts.

2023.4.7

Added a configuration file to customize default parameters. This update requires manually updating config.py. See config.py for specific usage.

2023.4.6

Added the "auto" option for automatically recognizing the language of the text. Modified the default value of the "lang" parameter to "auto". Automatic recognition still has some defects, please choose manually.

Unified the POST request type as multipart/form-data.

demo

Hugging Face Spaces

Please note that different IDs may support different languages.speakers

  • https://artrajz-vits-simple-api.hf.space/voice/vits?text=你好,こんにちは&id=164
  • https://artrajz-vits-simple-api.hf.space/voice/vits?text=Difficult the first time, easy the second.&id=4
  • excited:https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=111
  • whispered:https://artrajz-vits-simple-api.hf.space/w2v2-vits?text=こんにちは&id=3&emotion=2077
ssml.mov

Deploy

Docker

Docker image pull script

bash -c "$(wget -O- https://raw.githubusercontent.com/Artrajz/vits-simple-api/main/vits-simple-api-installer-latest.sh)"
  • The platforms currently supported by Docker images are linux/amd64 and linux/arm64.
  • After a successful pull, the vits model needs to be imported before use. Please follow the steps below to import the model.

Download VITS model

Put the model into /usr/local/vits-simple-api/Model

Folder structure

│  hubert-soft-0d54a1f4.pt
│  model.onnx
│  model.yaml
│
├─g
│      config.json
│      G_953000.pth
│
├─louise
│      360_epochs.pth
│      config.json
│
├─Nene_Nanami_Rong_Tang
│      1374_epochs.pth
│      config.json
│
├─Zero_no_tsukaima
│       1158_epochs.pth
│       config.json
│
└─npy
       25ecb3f6-f968-11ed-b094-e0d4e84af078.npy
       all_emotions.npy

Modify model path

Modify in /usr/local/vits-simple-api/config.py

config.py

# Fill in the model path here
MODEL_LIST = [
    # VITS
    [ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
    [ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
    [ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
    # HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
    [ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
    # W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
    [ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft model
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# load single npy: ABS_PATH+"/all_emotions.npy
# load mutiple npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# load mutiple npy from folder: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: Need to have both `model.onnx` and `model.yaml` files in the same path.
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"

Startup

docker compose up -d

Or execute the pull script again

Image update

Run the docker image pull script again

Virtual environment deployment

Clone

git clone https://github.com/Artrajz/vits-simple-api.git

Download python dependencies

A python virtual environment is recommended,use python >= 3.9

pip install -r requirements.txt

Fasttext may not be installed on windows, you can install it with the following command,or download wheels here

#python3.10 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp310-cp310-win_amd64.whl
#python3.9 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp39-cp39-win_amd64.whl

Download VITS model

Put the model into /path/to/vits-simple-api/Model

Folder structure

│  hubert-soft-0d54a1f4.pt
│  model.onnx
│  model.yaml
│
├─g
│      config.json
│      G_953000.pth
│
├─louise
│      360_epochs.pth
│      config.json
│
├─Nene_Nanami_Rong_Tang
│      1374_epochs.pth
│      config.json
│
├─Zero_no_tsukaima
│       1158_epochs.pth
│       config.json
│
└─npy
       25ecb3f6-f968-11ed-b094-e0d4e84af078.npy
       all_emotions.npy

Modify model path

Modify in /path/to/vits-simple-api/config.py

config.py

# Fill in the model path here
MODEL_LIST = [
    # VITS
    [ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
    [ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
    [ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
    # HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
    [ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
    # W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
    [ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft model
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# load single npy: ABS_PATH+"/all_emotions.npy
# load mutiple npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# load mutiple npy from folder: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: Need to have both `model.onnx` and `model.yaml` files in the same path.
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"

Startup

python app.py

GPU accelerated

Windows

Install CUDA

Check the highest version of CUDA supported by your graphics card:

nvidia-smi

Taking CUDA 11.7 as an example, download it from the official website

Install GPU version of PyTorch

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117

You can find the corresponding command for the version you need on the official website

Linux

The installation process is similar, but I don't have the environment to test it.

Openjtalk Installation Issue

If you are using an arm64 architecture platform, you may encounter some issues during installation due to the lack of arm64-compatible whl files on the official PyPI website. In such cases, you can use the whl file I have built to install Openjtalk.

pip install openjtalk==0.3.0.dev2 --index-url https://pypi.artrajz.cn/simple

Alternatively, you can manually build a whl file by following the instructions in this tutorial.

API

GET

speakers list

voice vits

check

POST

  • python
import re
import requests
import os
import random
import string
from requests_toolbelt.multipart.encoder import MultipartEncoder

abs_path = os.path.dirname(__file__)
base = "http://127.0.0.1:23456"


# 映射表
def voice_speakers():
    url = f"{base}/voice/speakers"

    res = requests.post(url=url)
    json = res.json()
    for i in json:
        print(i)
        for j in json[i]:
            print(j)
    return json


# 语音合成 voice vits
def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50):
    fields = {
        "text": text,
        "id": str(id),
        "format": format,
        "lang": lang,
        "length": str(length),
        "noise": str(noise),
        "noisew": str(noisew),
        "max": str(max)
    }
    boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

    m = MultipartEncoder(fields=fields, boundary=boundary)
    headers = {"Content-Type": m.content_type}
    url = f"{base}/voice"

    res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


# 语音转换 hubert-vits
def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8):
    upload_name = os.path.basename(upload_path)
    upload_type = f'audio/{upload_name.split(".")[1]}'  # wav,ogg

    with open(upload_path, 'rb') as upload_file:
        fields = {
            "upload": (upload_name, upload_file, upload_type),
            "id": str(id),
            "format": format,
            "length": str(length),
            "noise": str(noise),
            "noisew": str(noisew),
        }
        boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

        m = MultipartEncoder(fields=fields, boundary=boundary)
        headers = {"Content-Type": m.content_type}
        url = f"{base}/voice/hubert-vits"

        res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


# 维度情感模型 w2v2-vits
def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50, emotion=0):
    fields = {
        "text": text,
        "id": str(id),
        "format": format,
        "lang": lang,
        "length": str(length),
        "noise": str(noise),
        "noisew": str(noisew),
        "max": str(max),
        "emotion": str(emotion)
    }
    boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

    m = MultipartEncoder(fields=fields, boundary=boundary)
    headers = {"Content-Type": m.content_type}
    url = f"{base}/voice/w2v2-vits"

    res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


# 语音转换 同VITS模型内角色之间的音色转换
def voice_conversion(upload_path, original_id, target_id):
    upload_name = os.path.basename(upload_path)
    upload_type = f'audio/{upload_name.split(".")[1]}'  # wav,ogg

    with open(upload_path, 'rb') as upload_file:
        fields = {
            "upload": (upload_name, upload_file, upload_type),
            "original_id": str(original_id),
            "target_id": str(target_id),
        }
        boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
        m = MultipartEncoder(fields=fields, boundary=boundary)

        headers = {"Content-Type": m.content_type}
        url = f"{base}/voice/conversion"

        res = requests.post(url=url, data=m, headers=headers)

    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


def voice_ssml(ssml):
    fields = {
        "ssml": ssml,
    }
    boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

    m = MultipartEncoder(fields=fields, boundary=boundary)
    headers = {"Content-Type": m.content_type}
    url = f"{base}/voice/ssml"

    res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path

def voice_dimensional_emotion(upload_path):
    upload_name = os.path.basename(upload_path)
    upload_type = f'audio/{upload_name.split(".")[1]}'  # wav,ogg

    with open(upload_path, 'rb') as upload_file:
        fields = {
            "upload": (upload_name, upload_file, upload_type),
        }
        boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

        m = MultipartEncoder(fields=fields, boundary=boundary)
        headers = {"Content-Type": m.content_type}
        url = f"{base}/voice/dimension-emotion"

        res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path

API KEY

Set API_KEY_ENABLED = True in config.py to enable API key authentication. The API key is API_KEY = "api-key". After enabling it, you need to add the api_key parameter in GET requests and add the X-API-KEY parameter in the header for POST requests.

Parameter

VITS

Name Parameter Is must Default Type Instruction
Synthesized text text true str Text needed for voice synthesis.
Speaker ID id false 0 int The speaker ID.
Audio format format false wav str Support for wav,ogg,silk,mp3,flac
Text language lang false auto str The language of the text to be synthesized. Available options include auto, zh, ja, and mix. When lang=mix, the text should be wrapped in [ZH] or [JA].The default mode is auto, which automatically detects the language of the text
Audio length length false 1.0 float Adjusts the length of the synthesized speech, which is equivalent to adjusting the speed of the speech. The larger the value, the slower the speed.
Noise noise false 0.33 float Sample noise, controlling the randomness of the synthesis.
SDP noise noisew false 0.4 float Stochastic Duration Predictor noise, controlling the length of phoneme pronunciation.
Segmentation threshold max false 50 int Divide the text into paragraphs based on punctuation marks, and combine them into one paragraph when the length exceeds max. If max<=0, the text will not be divided into paragraphs.
Streaming response streaming false false bool Streamed synthesized speech with faster initial response.

VITS voice conversion

Name Parameter Is must Default Type Instruction
Uploaded Audio upload true file The audio file to be uploaded. It should be in wav or ogg
Source Role ID original_id true int The ID of the role used to upload the audio file.
Target Role ID target_id true int The ID of the target role to convert the audio to.

HuBert-VITS

Name Parameter Is must Default Type Instruction
Uploaded Audio upload true file The audio file to be uploaded. It should be in wav or ogg format.
Target speaker ID id true int The target speaker ID.
Audio format format true str wav,ogg,silk
Audio length length true float Adjusts the length of the synthesized speech, which is equivalent to adjusting the speed of the speech. The larger the value, the slower the speed.
Noise noise true float Sample noise, controlling the randomness of the synthesis.
sdp noise noisew true float Stochastic Duration Predictor noise, controlling the length of phoneme pronunciation.

W2V2-VITS

Name Parameter Is must Default Type Instruction
Synthesized text text true str Text needed for voice synthesis.
Speaker ID id false 0 int The speaker ID.
Audio format format false wav str Support for wav,ogg,silk,mp3,flac
Text language lang false auto str The language of the text to be synthesized. Available options include auto, zh, ja, and mix. When lang=mix, the text should be wrapped in [ZH] or [JA].The default mode is auto, which automatically detects the language of the text
Audio length length false 1.0 float Adjusts the length of the synthesized speech, which is equivalent to adjusting the speed of the speech. The larger the value, the slower the speed.
Noise noise false 0.33 float Sample noise, controlling the randomness of the synthesis.
SDP noise noisew false 0.4 float Stochastic Duration Predictor noise, controlling the length of phoneme pronunciation.
Segmentation threshold max false 50 int Divide the text into paragraphs based on punctuation marks, and combine them into one paragraph when the length exceeds max. If max<=0, the text will not be divided into paragraphs.
Dimensional emotion emotion false 0 int The range depends on the emotion reference file in npy format, such as the range of the innnky's model all_emotions.npy, which is 0-5457.

Dimensional emotion

Name Parameter Is must Default Type Instruction
Uploaded Audio upload true file Return the npy file that stores the dimensional emotion vectors.

SSML (Speech Synthesis Markup Language)

Supported Elements and Attributes

speak Element

Attribute Instruction Is must
id Default value is retrieved from config.py false
lang Default value is retrieved from config.py false
length Default value is retrieved from config.py false
noise Default value is retrieved from config.py false
noisew Default value is retrieved from config.py false
max Splits text into segments based on punctuation marks. When the sum of segment lengths exceeds max, it is treated as one segment. max<=0 means no segmentation. The default value is 0. false
model Default is vits. Options: w2v2-vits, emotion-vits false
emotion Only effective when using w2v2-vits or emotion-vits. The range depends on the npy emotion reference file. false

voice Element

Higher priority than speak.

Attribute Instruction Is must
id Default value is retrieved from config.py false
lang Default value is retrieved from config.py false
length Default value is retrieved from config.py false
noise Default value is retrieved from config.py false
noisew Default value is retrieved from config.py false
max Splits text into segments based on punctuation marks. When the sum of segment lengths exceeds max, it is treated as one segment. max<=0 means no segmentation. The default value is 0. false
model Default is vits. Options: w2v2-vits, emotion-vits false
emotion Only effective when using w2v2-vits or emotion-vits false

break Element

Attribute Instruction Is must
strength x-weak, weak, medium (default), strong, x-strong false
time The absolute duration of a pause in seconds (such as 2s) or milliseconds (such as 500ms). Valid values range from 0 to 5000 milliseconds. If you set a value greater than the supported maximum, the service will use 5000ms. If the time attribute is set, the strength attribute is ignored. false
Strength Relative Duration
x-weak 250 ms
weak 500 ms
medium 750 ms
strong 1000 ms
x-strong 1250 ms

Example

<speak lang="zh" format="mp3" length="1.2">
    <voice id="92" >这几天心里颇不宁静。</voice>
    <voice id="125">今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。</voice>
    <voice id="142">月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;</voice>
    <voice id="98">妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。</voice>
    <voice id="120">我悄悄地披了大衫,带上门出去。</voice><break time="2s"/>
    <voice id="121">沿着荷塘,是一条曲折的小煤屑路。</voice>
    <voice id="122">这是一条幽僻的路;白天也少人走,夜晚更加寂寞。</voice>
    <voice id="123">荷塘四面,长着许多树,蓊蓊郁郁的。</voice>
    <voice id="124">路的一旁,是些杨柳,和一些不知道名字的树。</voice>
    <voice id="125">没有月光的晚上,这路上阴森森的,有些怕人。</voice>
    <voice id="126">今晚却很好,虽然月光也还是淡淡的。</voice><break time="2s"/>
    <voice id="127">路上只我一个人,背着手踱着。</voice>
    <voice id="128">这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。</voice>
    <voice id="129">我爱热闹,也爱冷静;<break strength="x-weak"/>爱群居,也爱独处。</voice>
    <voice id="130">像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。</voice>
    <voice id="131">白天里一定要做的事,一定要说的话,现在都可不理。</voice>
    <voice id="132">这是独处的妙处,我且受用这无边的荷香月色好了。</voice>
</speak>

Communication

Learning and communication,now there is only Chinese QQ group

Acknowledgements