-
01-intro
- setup environment
- download data
- added training notebook
- done homework
-
02-experiment-tracking
- setup mlflow
- do experiment tracking
- Model tracking
- Model Registry
- Launch tracking server:- mlflow server --backend-store-uri sqlite:///mlflow.db --default-artifact-root artifacts
-
03-orchestration
- setup mage:
git clone https://github.com/mage-ai/mlops.git
- run mage server:
cd 03-orchestration/mlops && scripts/start.sh
- unit_1_data_preparation
- make pipeline
- data ingestion
- data transformation
- data visualization
- data exporters
- unit_2_training
- sklearn models: hyperparameter tuning
- sklearn models: training models with best hyperparameters
- XGBoost model: hyperparameter tuning
- XGBoost model: training model with best hyperparameters
- unit_3_observability
- didn't did all the charts and deployment
- setup mage:
-
04-deployment
-
05-monitoring
- Environment setup(conda activate py11)
- Prepare reference data and model
- Evidently metrics calculation
- Evidently dashboard
- Grafana dashboard with dummy data
- Grafana Dashboard with real data
- Saved dashboard to config json file
- Evidently ReportPreset and TestSuitePreset
- Done Homework
-
06-best-practices
- Unit Testing
- Integration Testing
- Local Stack(Kinesis test)
- pylint, black, isort
- pre-commit hooks
- Makefile
- Homework
- terraform (IAC Infrastructure as Code)
- terraform setup
- terraform basic
- Tool to download github repo sub directory: https://download-directory.github.io/
- Module 3 sorted video playlist: https://www.youtube.com/playlist?list=PLJlrBE4yPIzg9W9LaAp-3DOtZ9JnDd23J
- Docker remove all cache:
docker system prune -a
- conda deactivate
https://certificate.datatalks.club/mlops-zoomcamp/2024/286c615358c35738f2f81a0421901bd9d92992ab.pdf