forked from THUDM/GATNE
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
297 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
import math | ||
import os | ||
import sys | ||
import time | ||
|
||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import tqdm | ||
from numpy import random | ||
from torch.nn.parameter import Parameter | ||
|
||
from utils import * | ||
|
||
|
||
def get_batches(pairs, neighbors, batch_size): | ||
n_batches = (len(pairs) + (batch_size - 1)) // batch_size | ||
|
||
for idx in range(n_batches): | ||
x, y, t, neigh = [], [], [], [] | ||
for i in range(batch_size): | ||
index = idx * batch_size + i | ||
if index >= len(pairs): | ||
break | ||
x.append(pairs[index][0]) | ||
y.append(pairs[index][1]) | ||
t.append(pairs[index][2]) | ||
neigh.append(neighbors[pairs[index][0]]) | ||
yield torch.tensor(x), torch.tensor(y), torch.tensor(t), torch.tensor(neigh) | ||
|
||
|
||
class GATNEModel(nn.Module): | ||
def __init__( | ||
self, num_nodes, embedding_size, embedding_u_size, edge_type_count, dim_a | ||
): | ||
super(GATNEModel, self).__init__() | ||
self.num_nodes = num_nodes | ||
self.embedding_size = embedding_size | ||
self.embedding_u_size = embedding_u_size | ||
self.edge_type_count = edge_type_count | ||
self.dim_a = dim_a | ||
|
||
self.node_embeddings = Parameter(torch.FloatTensor(num_nodes, embedding_size)) | ||
self.node_type_embeddings = Parameter( | ||
torch.FloatTensor(num_nodes, edge_type_count, embedding_u_size) | ||
) | ||
self.trans_weights = Parameter( | ||
torch.FloatTensor(edge_type_count, embedding_u_size, embedding_size) | ||
) | ||
self.trans_weights_s1 = Parameter( | ||
torch.FloatTensor(edge_type_count, embedding_u_size, dim_a) | ||
) | ||
self.trans_weights_s2 = Parameter(torch.FloatTensor(edge_type_count, dim_a, 1)) | ||
|
||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
self.node_embeddings.data.uniform_(-1.0, 1.0) | ||
self.node_type_embeddings.data.uniform_(-1.0, 1.0) | ||
self.trans_weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size)) | ||
self.trans_weights_s1.data.normal_(std=1.0 / math.sqrt(self.embedding_size)) | ||
self.trans_weights_s2.data.normal_(std=1.0 / math.sqrt(self.embedding_size)) | ||
|
||
def forward(self, train_inputs, train_types, node_neigh): | ||
node_embed = self.node_embeddings[train_inputs] | ||
node_embed_neighbors = self.node_type_embeddings[node_neigh] | ||
node_embed_tmp = torch.cat( | ||
[ | ||
node_embed_neighbors[:, i, :, i, :].unsqueeze(1) | ||
for i in range(self.edge_type_count) | ||
], | ||
dim=1, | ||
) | ||
node_type_embed = torch.sum(node_embed_tmp, dim=2) | ||
|
||
trans_w = self.trans_weights[train_types] | ||
trans_w_s1 = self.trans_weights_s1[train_types] | ||
trans_w_s2 = self.trans_weights_s2[train_types] | ||
|
||
attention = F.softmax( | ||
torch.matmul( | ||
torch.tanh(torch.matmul(node_type_embed, trans_w_s1)), trans_w_s2 | ||
).squeeze(2), | ||
dim=1, | ||
).unsqueeze(1) | ||
node_type_embed = torch.matmul(attention, node_type_embed) | ||
node_embed = node_embed + torch.matmul(node_type_embed, trans_w).squeeze(1) | ||
|
||
last_node_embed = F.normalize(node_embed, dim=1) | ||
|
||
return last_node_embed | ||
|
||
|
||
class NSLoss(nn.Module): | ||
def __init__(self, num_nodes, num_sampled, embedding_size): | ||
super(NSLoss, self).__init__() | ||
self.num_nodes = num_nodes | ||
self.num_sampled = num_sampled | ||
self.embedding_size = embedding_size | ||
self.weights = Parameter(torch.FloatTensor(num_nodes, embedding_size)) | ||
self.sample_weights = F.normalize( | ||
torch.Tensor( | ||
[ | ||
(math.log(k + 2) - math.log(k + 1)) / math.log(num_nodes + 1) | ||
for k in range(num_nodes) | ||
] | ||
), | ||
dim=0, | ||
) | ||
|
||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
self.weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size)) | ||
|
||
def forward(self, input, embs, label): | ||
n = input.shape[0] | ||
log_target = torch.log( | ||
torch.sigmoid(torch.sum(torch.mul(embs, self.weights[label]), 1)) | ||
) | ||
negs = torch.multinomial( | ||
self.sample_weights, self.num_sampled * n, replacement=True | ||
).view(n, self.num_sampled) | ||
noise = torch.neg(self.weights[negs]) | ||
sum_log_sampled = torch.sum( | ||
torch.log(torch.sigmoid(torch.bmm(noise, embs.unsqueeze(2)))), 1 | ||
).squeeze() | ||
|
||
loss = log_target + sum_log_sampled | ||
return -loss.sum() / n | ||
|
||
|
||
def train_model(network_data): | ||
all_walks = generate_walks(network_data, args.num_walks, args.walk_length, args.schema, file_name) | ||
vocab, index2word = generate_vocab(all_walks) | ||
train_pairs = generate_pairs(all_walks, vocab, args.window_size) | ||
|
||
edge_types = list(network_data.keys()) | ||
|
||
num_nodes = len(index2word) | ||
edge_type_count = len(edge_types) | ||
epochs = args.epoch | ||
batch_size = args.batch_size | ||
embedding_size = args.dimensions | ||
embedding_u_size = args.edge_dim | ||
u_num = edge_type_count | ||
num_sampled = args.negative_samples | ||
dim_a = args.att_dim | ||
att_head = 1 | ||
neighbor_samples = args.neighbor_samples | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
neighbors = [[[] for __ in range(edge_type_count)] for _ in range(num_nodes)] | ||
for r in range(edge_type_count): | ||
g = network_data[edge_types[r]] | ||
for (x, y) in g: | ||
ix = vocab[x].index | ||
iy = vocab[y].index | ||
neighbors[ix][r].append(iy) | ||
neighbors[iy][r].append(ix) | ||
for i in range(num_nodes): | ||
if len(neighbors[i][r]) == 0: | ||
neighbors[i][r] = [i] * neighbor_samples | ||
elif len(neighbors[i][r]) < neighbor_samples: | ||
neighbors[i][r].extend( | ||
list( | ||
np.random.choice( | ||
neighbors[i][r], | ||
size=neighbor_samples - len(neighbors[i][r]), | ||
) | ||
) | ||
) | ||
elif len(neighbors[i][r]) > neighbor_samples: | ||
neighbors[i][r] = list( | ||
np.random.choice(neighbors[i][r], size=neighbor_samples) | ||
) | ||
|
||
model = GATNEModel( | ||
num_nodes, embedding_size, embedding_u_size, edge_type_count, dim_a | ||
) | ||
nsloss = NSLoss(num_nodes, num_sampled, embedding_size) | ||
|
||
model.to(device) | ||
nsloss.to(device) | ||
|
||
optimizer = torch.optim.Adam( | ||
[{"params": model.parameters()}, {"params": nsloss.parameters()}], lr=1e-4 | ||
) | ||
|
||
best_score = 0 | ||
patience = 0 | ||
for epoch in range(epochs): | ||
random.shuffle(train_pairs) | ||
batches = get_batches(train_pairs, neighbors, batch_size) | ||
|
||
data_iter = tqdm.tqdm( | ||
batches, | ||
desc="epoch %d" % (epoch), | ||
total=(len(train_pairs) + (batch_size - 1)) // batch_size, | ||
bar_format="{l_bar}{r_bar}", | ||
) | ||
avg_loss = 0.0 | ||
|
||
for i, data in enumerate(data_iter): | ||
optimizer.zero_grad() | ||
embs = model(data[0].to(device), data[2].to(device), data[3].to(device),) | ||
loss = nsloss(data[0].to(device), embs, data[1].to(device)) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
avg_loss += loss.item() | ||
|
||
if i % 5000 == 0: | ||
post_fix = { | ||
"epoch": epoch, | ||
"iter": i, | ||
"avg_loss": avg_loss / (i + 1), | ||
"loss": loss.item(), | ||
} | ||
data_iter.write(str(post_fix)) | ||
|
||
final_model = dict(zip(edge_types, [dict() for _ in range(edge_type_count)])) | ||
for i in range(num_nodes): | ||
train_inputs = torch.tensor([i for _ in range(edge_type_count)]).to(device) | ||
train_types = torch.tensor(list(range(edge_type_count))).to(device) | ||
node_neigh = torch.tensor( | ||
[neighbors[i] for _ in range(edge_type_count)] | ||
).to(device) | ||
node_emb = model(train_inputs, train_types, node_neigh) | ||
for j in range(edge_type_count): | ||
final_model[edge_types[j]][index2word[i]] = ( | ||
node_emb[j].cpu().detach().numpy() | ||
) | ||
|
||
valid_aucs, valid_f1s, valid_prs = [], [], [] | ||
test_aucs, test_f1s, test_prs = [], [], [] | ||
for i in range(edge_type_count): | ||
if args.eval_type == "all" or edge_types[i] in args.eval_type.split(","): | ||
tmp_auc, tmp_f1, tmp_pr = evaluate( | ||
final_model[edge_types[i]], | ||
valid_true_data_by_edge[edge_types[i]], | ||
valid_false_data_by_edge[edge_types[i]], | ||
) | ||
valid_aucs.append(tmp_auc) | ||
valid_f1s.append(tmp_f1) | ||
valid_prs.append(tmp_pr) | ||
|
||
tmp_auc, tmp_f1, tmp_pr = evaluate( | ||
final_model[edge_types[i]], | ||
testing_true_data_by_edge[edge_types[i]], | ||
testing_false_data_by_edge[edge_types[i]], | ||
) | ||
test_aucs.append(tmp_auc) | ||
test_f1s.append(tmp_f1) | ||
test_prs.append(tmp_pr) | ||
print("valid auc:", np.mean(valid_aucs)) | ||
print("valid pr:", np.mean(valid_prs)) | ||
print("valid f1:", np.mean(valid_f1s)) | ||
|
||
average_auc = np.mean(test_aucs) | ||
average_f1 = np.mean(test_f1s) | ||
average_pr = np.mean(test_prs) | ||
|
||
cur_score = np.mean(valid_aucs) | ||
if cur_score > best_score: | ||
best_score = cur_score | ||
patience = 0 | ||
else: | ||
patience += 1 | ||
if patience > args.patience: | ||
print("Early Stopping") | ||
break | ||
return average_auc, average_f1, average_pr | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
file_name = args.input | ||
print(args) | ||
|
||
training_data_by_type = load_training_data(file_name + "/train.txt") | ||
valid_true_data_by_edge, valid_false_data_by_edge = load_testing_data( | ||
file_name + "/valid.txt" | ||
) | ||
testing_true_data_by_edge, testing_false_data_by_edge = load_testing_data( | ||
file_name + "/test.txt" | ||
) | ||
|
||
average_auc, average_f1, average_pr = train_model(training_data_by_type) | ||
|
||
print("Overall ROC-AUC:", average_auc) | ||
print("Overall PR-AUC", average_pr) | ||
print("Overall F1:", average_f1) |