-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion.py
254 lines (209 loc) · 10.2 KB
/
fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python
import glob
import argparse
import os.path as osp
import logging
import time
import sys
sys.path.insert(0, osp.dirname(__file__) + '/..')
import numpy as np
import torch
import torch.nn as nn
import cv2
import torch.nn.functional as F
from plyfile import PlyData, PlyElement
from PIL import Image
import re
import torch
import os
from IPython import embed
def read_pfm(filename):
file = open(filename, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().decode('utf-8').rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
file.close()
return data, scale
def read_img(filename):
img = Image.open(filename)
np_img = np.array(img, dtype=np.float32) / 255.
return np_img
def read_camera_parameters(filename):
with open(filename) as f:
lines = f.readlines()
lines = [line.rstrip() for line in lines]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3))
return intrinsics, extrinsics
def read_pair_file(filename):
data = []
with open(filename) as f:
num_viewpoint = int(f.readline())
# 49 viewpoints
# for view_idx in range(0,5):
for view_idx in range(num_viewpoint):
ref_view = int(f.readline().rstrip())
src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
data.append((ref_view, src_views))
return data
def reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
width, height = depth_ref.shape[1], depth_ref.shape[0]
## step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
# reference 3D space
xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
np.vstack((x_ref, y_ref, np.ones_like(x_ref))) * depth_ref.reshape([-1]))
# source 3D space
xyz_src = np.matmul(np.matmul(extrinsics_src, np.linalg.inv(extrinsics_ref)),
np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
# source view x, y
K_xyz_src = np.matmul(intrinsics_src, xyz_src)
xy_src = K_xyz_src[:2] / K_xyz_src[2:3]
## step2. reproject the source view points with source view depth estimation
# find the depth estimation of the source view
x_src = xy_src[0].reshape([height, width]).astype(np.float32)
y_src = xy_src[1].reshape([height, width]).astype(np.float32)
sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR)
# mask = sampled_depth_src > 0
# source 3D space
# NOTE that we should use sampled source-view depth_here to project back
xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
# reference 3D space
xyz_reprojected = np.matmul(np.matmul(extrinsics_ref, np.linalg.inv(extrinsics_src)),
np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
# source view x, y, depth
depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
K_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
xy_reprojected = K_xyz_reprojected[:2] / K_xyz_reprojected[2:3]
x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)
return depth_reprojected, x_reprojected, y_reprojected, x_src, y_src
def check_geometric_consistency(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
width, height = depth_ref.shape[1], depth_ref.shape[0]
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
depth_reprojected, x2d_reprojected, y2d_reprojected, x2d_src, y2d_src = reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref,
depth_src, intrinsics_src, extrinsics_src)
# check |p_reproj-p_1| < 1
dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)
# check |d_reproj-d_1| / d_1 < 0.01
depth_diff = np.abs(depth_reprojected - depth_ref)
relative_depth_diff = depth_diff / depth_ref
mask = np.logical_and(dist < 0.3, relative_depth_diff < 0.001)
# mask = np.logical_and(dist < 1, relative_depth_diff < 0.01)
depth_reprojected[~mask] = 0
return mask, depth_reprojected, x2d_src, y2d_src
def filter_depth(scan_folder, pair_folder, plyfilename):
# the pair file
pair_file = os.path.join(pair_folder, "pair.txt")
# for the final point cloud
vertexs = []
vertex_colors = []
pair_data = read_pair_file(pair_file)
nviews = len(pair_data)
# TODO: hardcode size
# for each reference view and the corresponding source views
for ref_view, src_views in pair_data:
# load the camera parameters
ref_intrinsics, ref_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cam/cam_{:0>8}.txt'.format(ref_view)))
# load the reference image
ref_img = read_img(os.path.join(scan_folder, 'rgb/{:0>8}.png'.format(ref_view)))
# load the estimated depth of the reference view
ref_depth_est = read_pfm(os.path.join(scan_folder, 'depth_sdf/dep_{:0>8}.pfm'.format(ref_view)))[0]
# load the photometric mask of the reference view
confidence = read_pfm(os.path.join(scan_folder, 'confidence/conf_{:0>8}.pfm'.format(ref_view)))[0]
h, w = ref_depth_est.shape
confidence = cv2.resize(confidence, (w, h), interpolation=cv2.INTER_LINEAR)
photo_mask = confidence > 0.8
all_srcview_depth_ests = []
all_srcview_x = []
all_srcview_y = []
all_srcview_geomask = []
# compute the geometric mask
geo_mask_sum = 0
for src_view in src_views:
# camera parameters of the source view
src_intrinsics, src_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cam/cam_{:0>8}.txt'.format(src_view)))
# the estimated depth of the source view
src_depth_est = read_pfm(os.path.join(scan_folder, 'depth_sdf/dep_{:0>8}.pfm'.format(src_view)))[0]
geo_mask, depth_reprojected, x2d_src, y2d_src = check_geometric_consistency(ref_depth_est, ref_intrinsics, ref_extrinsics,
src_depth_est,
src_intrinsics, src_extrinsics)
geo_mask_sum += geo_mask.astype(np.int32)
all_srcview_depth_ests.append(depth_reprojected)
all_srcview_x.append(x2d_src)
all_srcview_y.append(y2d_src)
all_srcview_geomask.append(geo_mask)
depth_est_averaged = (sum(all_srcview_depth_ests) + ref_depth_est) / (geo_mask_sum + 1)
# at least 3 source views matched
geo_mask = geo_mask_sum >= 3
final_mask = np.logical_and(photo_mask, geo_mask)
print("processing {}, ref-view{:0>2}, photo/geo/final-mask:{}/{}/{}".format(scan_folder, ref_view,
photo_mask.mean(),
geo_mask.mean(), final_mask.mean()))
height, width = depth_est_averaged.shape[:2]
x, y = np.meshgrid(np.arange(0, width), np.arange(0, height))
valid_points = final_mask
print("valid_points", valid_points.mean())
x, y, depth = x[valid_points], y[valid_points], depth_est_averaged[valid_points]
color = ref_img[valid_points] # hardcoded for DTU dataset
xyz_ref = np.matmul(np.linalg.inv(ref_intrinsics),
np.vstack((x, y, np.ones_like(x))) * depth)
xyz_world = np.matmul(np.linalg.inv(ref_extrinsics),
np.vstack((xyz_ref, np.ones_like(x))))[:3]
vertexs.append(xyz_world.transpose((1, 0)))
vertex_colors.append((color * 255).astype(np.uint8))
vertexs = np.concatenate(vertexs, axis=0)
vertex_colors = np.concatenate(vertex_colors, axis=0)
vertexs = np.array([tuple(v) for v in vertexs], dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')])
vertex_colors = np.array([tuple(v) for v in vertex_colors], dtype=[('red', 'u1'), ('green', 'u1'), ('blue', 'u1')])
vertex_all = np.empty(len(vertexs), vertexs.dtype.descr + vertex_colors.dtype.descr)
for prop in vertexs.dtype.names:
vertex_all[prop] = vertexs[prop]
for prop in vertex_colors.dtype.names:
vertex_all[prop] = vertex_colors[prop]
el = PlyElement.describe(vertex_all, 'vertex')
PlyData([el]).write(plyfilename)
print("saving the final model to", plyfilename)
if __name__ == "__main__":
root_dir = './outputs'
testlist='./dataloader/datalist/dtu/test.txt'
testpath='./data/dtu/Eval'
with open(testlist) as f:
scans = f.readlines()
scans = [line.rstrip() for line in scans]
for scan in scans:
scan_id = int(scan[4:])
scan_folder = os.path.join(root_dir, scan)
pair_folder = os.path.join(testpath, scan)
filter_depth(scan_folder, pair_folder, os.path.join(root_dir, 'sdfnet{:0>3}_l3.ply'.format(scan_id)))