-
Notifications
You must be signed in to change notification settings - Fork 0
/
render_ZJU.py
162 lines (131 loc) · 6.15 KB
/
render_ZJU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
from scene import Scene
import os
import time
import pickle
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from utils.image_utils import psnr
from utils.loss_utils import ssim
import lpips
loss_fn_vgg = lpips.LPIPS(net='vgg').to(torch.device('cuda', torch.cuda.current_device()))
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
ply_path = os.path.join(model_path, name, "ours_{}".format(iteration), "ply")
depth_path = os.path.join(model_path, name, "ours_{}".format(iteration), "depth")
alpha_path = os.path.join(model_path, name, "ours_{}".format(iteration), "alpha")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
# Load data (deserialize)
with open(model_path + '/smpl_rot/' + f'iteration_{iteration}/' + 'smpl_rot.pickle', 'rb') as handle:
smpl_rot = pickle.load(handle)
rgbs = []
rgbs_gt = []
elapsed_time = 0
# import copy
# temp_view = copy.deepcopy(views[0])
for index, view in enumerate(tqdm(views, desc="Rendering progress")):
gt = view.original_image[0:3, :, :].cuda()
bound_mask = view.bound_mask
transforms, translation = smpl_rot[name][view.pose_id]['transforms'], smpl_rot[name][view.pose_id]['translation']
torch.cuda.synchronize()
start_time = time.perf_counter()
render_output = render(view, gaussians, pipeline, background, transforms=transforms, translation=translation)
rendering = render_output["render"]
torch.cuda.synchronize()
end_time = time.perf_counter()
# Calculate elapsed time
elapsed_time += end_time - start_time
rendering.permute(1,2,0)[bound_mask[0]==0] = 0 if background.sum().item() == 0 else 1
rgbs.append(rendering)
rgbs_gt.append(gt)
print("Elapsed time: ", elapsed_time, " FPS: ", len(views)/elapsed_time)
psnrs = 0.0
ssims = 0.0
lpipss = 0.0
for id in range(len(views)):
rendering = rgbs[id]
gt = rgbs_gt[id]
rendering = torch.clamp(rendering, 0.0, 1.0)
gt = torch.clamp(gt, 0.0, 1.0)
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(id) + ".png"))
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(id) + ".png"))
# metrics
psnrs += psnr(rendering, gt).mean().double()
ssims += ssim(rendering, gt).mean().double()
lpipss += loss_fn_vgg(rendering, gt).mean().double()
psnrs /= len(views)
ssims /= len(views)
lpipss /= len(views)
# evalution metrics
print("==========="*8)
print("\n[ITER {}] Evaluating {} #{}: PSNR SSIM LPIPS ".format(iteration, name, len(views)))
print(f"{psnrs.item(), ssims.item(), lpipss.item()*1000}")
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree, dataset.smpl_type, dataset.motion_offset_flag, dataset.actor_gender)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
args = get_combined_args(parser)
args.actor_gender='neutral'
args.compute_cov3D_python=True
args.convert_SHs_python=False
args.data_device='cuda'
args.debug=False
args.eval=True
name_list = ['377','386','387','392','393','394']
log_name = ''
iteration_list = [2700,2700,3000,3000,2500,2700]
for iteration,data_name in zip(iteration_list,name_list):
args.data_name = data_name
args.exp_name=f'/home/tom/fsas/workspace/MOSS/output/ZJU/my_{args.data_name}'
args.iteration=iteration
args.images='images'
# args.model_path=f'output/{args.exp_name}'
args.model_path=f'{args.exp_name}'
args.motion_offset_flag=True
args.quiet=False
args.resolution=-1
args.sh_degree=3
args.skip_test=False
args.skip_train=True
args.smpl_type='smpl'
args.source_path=f'/home/tom/fsas/workspace/dataset/ZJU_monocap/my_{args.data_name}'
args.white_background=False
print("=====================================")
print("Rendering " + args.exp_name)
print(args)
print("=====================================")
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test)