Skip to content

基于vits与softvc的歌声音色转换模型

License

Notifications You must be signed in to change notification settings

332plim/so-vits-svc

 
 

Repository files navigation

Variational Inference with adversarial learning for end-to-end Singing Voice Conversion based on VITS

Hugging Face Spaces Open in Colab GitHub Repo stars GitHub forks GitHub issues GitHub

中文文档

  • This project is target for: beginners in deep learning, the basic operation of Python and PyTorch is the prerequisite for using this project;
  • This project aims to help deep learning beginners get rid of boring pure theoretical learning, and master the basic knowledge of deep learning by combining it with practice;
  • This project does not support real-time voice change; (support needs to replace whisper)
  • This project will not develop one-click packages for other purposes;

vits-5.0-frame

  • 6G memory GPU can be used to trained

  • support for multiple speakers

  • create unique speakers through speaker mixing

  • even with light accompaniment can also be converted

  • F0 can be edited using Excel

Model properties

Feature From Status Function
whisper OpenAI strong noise immunity
bigvgan NVIDA alias and snake
natural speech Microsoft reduce mispronunciation
neural source-filter NII solve the problem of audio F0 discontinuity
speaker encoder Google Timbre Encoding and Clustering
GRL for speaker Ubisoft Preventing Encoder Leakage Timbre
one shot vits Samsung Voice Clone
SCLN Microsoft Improve Clone
PPG perturbation this project Improved noise immunity and de-timbre
HuBERT perturbation this project Improved noise immunity and de-timbre
VAE perturbation this project Improve sound quality

due to the use of data perturbation, it takes longer to train than other projects.

Dataset preparation

Necessary pre-processing:

  • 1 accompaniment separation, UVR
  • 2 cut audio, less than 30 seconds for whisper, slicer

then put the dataset into the dataset_raw directory according to the following file structure

dataset_raw
├───speaker0
│   ├───000001.wav
│   ├───...
│   └───000xxx.wav
└───speaker1
    ├───000001.wav
    ├───...
    └───000xxx.wav

Install dependencies

  • 1 software dependency

    apt update && sudo apt install ffmpeg

    pip install -r requirements.txt

  • 2 download the Timbre Encoder: Speaker-Encoder by @mueller91, put best_model.pth.tar into speaker_pretrain/

  • 3 download whisper model whisper-large-v2, Make sure to download large-v2.pt,put it into whisper_pretrain/

  • 4 whisper is built-in, do not install it additionally, it will conflict and report an error

  • 5 download hubert_soft model,put hubert-soft-0d54a1f4.pt into hubert_pretrain/

Data preprocessing

  • 1, re-sampling

    generate audio with a sampling rate of 16000Hz:./data_svc/waves-16k

    python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-16k -s 16000

    generate audio with a sampling rate of 32000Hz:./data_svc/waves-32k

    python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-32k -s 32000

  • 2, use 16K audio to extract pitch:

    python prepare/preprocess_crepe.py -w data_svc/waves-16k/ -p data_svc/pitch

  • 3, use 16K audio to extract ppg

    python prepare/preprocess_ppg.py -w data_svc/waves-16k/ -p data_svc/whisper

  • 4, use 16K audio to extract hubert

    python prepare/preprocess_hubert.py -w data_svc/waves-16k/ -v data_svc/hubert

  • 5, use 16k audio to extract timbre code

    python prepare/preprocess_speaker.py data_svc/waves-16k/ data_svc/speaker

  • 6, extract the average value of the timbre code for inference; it can also replace a single audio timbre in generating the training index, and use it as the unified timbre of the speaker for training

    python prepare/preprocess_speaker_ave.py data_svc/speaker/ data_svc/singer

  • 7, use 32k audio to extract the linear spectrum

    python prepare/preprocess_spec.py -w data_svc/waves-32k/ -s data_svc/specs

  • 8, use 32k audio to generate training index

    python prepare/preprocess_train.py

  • 9, training file debugging

    python prepare/preprocess_zzz.py

data_svc/
└── waves-16k
│    └── speaker0
│    │      ├── 000001.wav
│    │      └── 000xxx.wav
│    └── speaker1
│           ├── 000001.wav
│           └── 000xxx.wav
└── waves-32k
│    └── speaker0
│    │      ├── 000001.wav
│    │      └── 000xxx.wav
│    └── speaker1
│           ├── 000001.wav
│           └── 000xxx.wav
└── pitch
│    └── speaker0
│    │      ├── 000001.pit.npy
│    │      └── 000xxx.pit.npy
│    └── speaker1
│           ├── 000001.pit.npy
│           └── 000xxx.pit.npy
└── hubert
│    └── speaker0
│    │      ├── 000001.vec.npy
│    │      └── 000xxx.vec.npy
│    └── speaker1
│           ├── 000001.vec.npy
│           └── 000xxx.vec.npy
└── whisper
│    └── speaker0
│    │      ├── 000001.ppg.npy
│    │      └── 000xxx.ppg.npy
│    └── speaker1
│           ├── 000001.ppg.npy
│           └── 000xxx.ppg.npy
└── speaker
│    └── speaker0
│    │      ├── 000001.spk.npy
│    │      └── 000xxx.spk.npy
│    └── speaker1
│           ├── 000001.spk.npy
│           └── 000xxx.spk.npy
└── singer
    ├── speaker0.spk.npy
    └── speaker1.spk.npy

Train

  • 1, if fine-tuning based on the pre-trained model, you need to download the pre-trained model: sovits5.0_bigvgan_mix_v2.pth

    set pretrain: "./sovits5.0_bigvgan_mix_v2.pth" in configs/base.yaml,and adjust the learning rate appropriately, eg 5e-5

  • 2, start training

    python svc_trainer.py -c configs/base.yaml -n sovits5.0

  • 3, resume training

    python svc_trainer.py -c configs/base.yaml -n sovits5.0 -p chkpt/sovits5.0/***.pth

  • 4, view log

    tensorboard --logdir logs/

sovits5 0_base

Inference

  • 1, export inference model: text encoder, Flow network, Decoder network

    python svc_export.py --config configs/base.yaml --checkpoint_path chkpt/sovits5.0/***.pt

  • 2, use whisper to extract content encoding, without using one-click reasoning, in order to reduce GPU memory usage

    python whisper/inference.py -w test.wav -p test.ppg.npy

  • 3, use hubert to extract content vector, without using one-click reasoning, in order to reduce GPU memory usage

    python hubert/inference.py -w test.wav -v test.vec.npy

  • 4, extract the F0 parameter to the csv text format, open the csv file in Excel, and manually modify the wrong F0 according to Audition or SonicVisualiser

    python pitch/inference.py -w test.wav -p test.csv

  • 5,specify parameters and infer

    python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk ./configs/singers/singer0001.npy --wave test.wav --ppg test.ppg.npy --vec test.vec.npy --pit test.csv

    when --ppg is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted;

    when --vec is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted;

    when --pit is specified, the manually tuned F0 parameter can be loaded; if not specified, it will be automatically extracted;

    generate files in the current directory:svc_out.wav

    args --config --model --spk --wave --ppg --vec --pit --shift
    name config path model path speaker wave input wave ppg wave hubert wave pitch pitch shift

Creat singer

named by pure coincidence:average -> ave -> eva,eve(eva) represents conception and reproduction

python svc_eva.py

eva_conf = {
    './configs/singers/singer0022.npy': 0,
    './configs/singers/singer0030.npy': 0,
    './configs/singers/singer0047.npy': 0.5,
    './configs/singers/singer0051.npy': 0.5,
}

the generated singer file is:eva.spk.npy

Data set

Name URL
KiSing http://shijt.site/index.php/2021/05/16/kising-the-first-open-source-mandarin-singing-voice-synthesis-corpus/
PopCS https://github.com/MoonInTheRiver/DiffSinger/blob/master/resources/apply_form.md
opencpop https://wenet.org.cn/opencpop/download/
Multi-Singer https://github.com/Multi-Singer/Multi-Singer.github.io
M4Singer https://github.com/M4Singer/M4Singer/blob/master/apply_form.md
CSD https://zenodo.org/record/4785016#.YxqrTbaOMU4
KSS https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset
JVS MuSic https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_music
PJS https://sites.google.com/site/shinnosuketakamichi/research-topics/pjs_corpus
JUST Song https://sites.google.com/site/shinnosuketakamichi/publication/jsut-song
MUSDB18 https://sigsep.github.io/datasets/musdb.html#musdb18-compressed-stems
DSD100 https://sigsep.github.io/datasets/dsd100.html
Aishell-3 http://www.aishelltech.com/aishell_3
VCTK https://datashare.ed.ac.uk/handle/10283/2651

Code sources and references

https://github.com/facebookresearch/speech-resynthesis paper

https://github.com/jaywalnut310/vits paper

https://github.com/openai/whisper/ paper

https://github.com/NVIDIA/BigVGAN paper

https://github.com/mindslab-ai/univnet paper

https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf

https://github.com/brentspell/hifi-gan-bwe

https://github.com/mozilla/TTS

https://github.com/bshall/soft-vc

https://github.com/maxrmorrison/torchcrepe

https://github.com/OlaWod/FreeVC paper

SNAC : Speaker-normalized Affine Coupling Layer in Flow-based Architecture for Zero-Shot Multi-Speaker Text-to-Speech

Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers

AdaSpeech: Adaptive Text to Speech for Custom Voice

Cross-Speaker Prosody Transfer on Any Text for Expressive Speech Synthesis

Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings

Adversarial Speaker Disentanglement Using Unannotated External Data for Self-supervised Representation Based Voice Conversion

Speaker normalization (GRL) for self-supervised speech emotion recognition

Method of Preventing Timbre Leakage Based on Data Perturbation

https://github.com/auspicious3000/contentvec/blob/main/contentvec/data/audio/audio_utils_1.py

https://github.com/revsic/torch-nansy/blob/main/utils/augment/praat.py

https://github.com/revsic/torch-nansy/blob/main/utils/augment/peq.py

https://github.com/biggytruck/SpeechSplit2/blob/main/utils.py

https://github.com/OlaWod/FreeVC/blob/main/preprocess_sr.py

Contributors

About

基于vits与softvc的歌声音色转换模型

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.4%
  • Jupyter Notebook 2.6%