-
v.1.5.2.9a
- fix: ServerDeviceMode Channel Setting
- fix: model merge issue
-
v.1.5.2.9
- Support DDSP-SVC 3.0 (Ph.1)
- Server Device Mode (experimental)
-
v.1.5.2.8
- auto-downloader for weight of hubert.
- auto detect half-precision.
- auto detect onnx execution provider.
- force onnx export by cpu.
- support japanse hubert. (experimental)
-
v.1.5.2.7
- New Feature: model merger.
- 各種音声変換 AI(VC, Voice Conversion)を用いてリアルタイム音声変換を行うためのクライアントソフトウェアです。サポートしている音声変換 AI は次のものになります。
- サポートする音声変換 AI (サポート VC)
- 本ソフトウェアは、ネットワークを介した利用も可能であり、ゲームなどの高負荷なアプリケーションと同時に使用する場合などに音声変換処理の負荷を外部にオフロードすることができます。
- 複数のプラットフォームに対応しています。
- Windows, Mac(M1), Linux, Google Colab (MMVC のみ)
大きく 3 つの方法でご利用できます。難易度順に次の通りです。
- Google Colaboratory での利用(MMVC のみ)
- 事前ビルド済みの Binary での利用
- Docker や Anaconda など環境構築を行った上での利用
本ソフトウェアや MMVC になじみの薄い方は上から徐々に慣れていくとよいと思います。
Google が提供している機械学習プラットフォーム Colaboratory 上で実行できます。 MMVC のモデルをトレーニングが完了している場合、既に Colaboratory を利用していると思いますので、事前準備は必要ありません。ただし、ネットワーク環境や Colaboratory の状況によってボイスチェンジャのタイムラグが大きくなる傾向があります。
実行形式のバイナリをダウンロードして実行することができます。 Windows 版と Mac 版を提供しています。
-
Windows 版は、ダウンロードした zip ファイルを解凍して、
start_http.bat
を実行してください。 -
Mac 版はダウンロードファイルを解凍したのちに、
startHttp.command
を実行してください。開発元を検証できない旨が示される場合は、再度コントロールキーを押してクリックして実行してください(or 右クリックから実行してください)。 -
リモートから接続する場合は、
.bat
ファイル(win)、.command
ファイル(mac)の http が https に置き換わっているものを使用してください。 -
つくよみちゃん、あみたろ、黄琴まひろ、黄琴海月、の動作には content vec のモデルが必要となります。こちらのリポジトリから、ContentVec_legacy 500 のモデルをダウンロードして、実行する
startHttp.command
やstart_http.bat
と同じフォルダに配置してください。 -
DDSP-SVC の動作には、hubert-soft と enhancer のモデルが必要です。hubert-soft はこのリンクからダウンロードして、バッチファイルがあるフォルダに格納してください。enhancer はこのサイトから
nsf_hifigan_20221211.zip
ダウンロードして下さい。解凍すると出てくるnsf_hifigan
というフォルダをバッチファイルがあるフォルダに格納してください。 -
DDPS-SVC の encoder は hubert-soft のみ対応です。
-
RVC で使用する場合の GUI の各項目説明はこちらをご覧ください
-
ダウンロードはこちらから。
Version | OS | フレームワーク | link | サポート VC | サイズ |
---|---|---|---|---|---|
v.1.5.2.9e | mac | ONNX(cpu), PyTorch(cpu,mps) | normal *1 | MMVC v.1.5.x, MMVC v.1.3.x, so-vits-svc 4.0, RVC | 796MB |
win | ONNX(cpu,cuda), PyTorch(cpu,cuda) | normal *1 | MMVC v.1.5.x, MMVC v.1.3.x, so-vits-svc 4.0, so-vits-svc 4.0v2, RVC, DDSP-SVC | 2872MB |
(*1) Google Drive からダウンロードできない方はhugging_faceからダウンロードしてみてください (*2) 開発者が AMD のグラフィックボードを持っていないので動作確認していません。onnxruntime-directml を同梱しただけのものです。
- 各キャラクター専用(近々 RVC 版として提供予定)
Version | OS | フレームワーク | link | サポート VC | サイズ |
---|---|---|---|---|---|
v.1.5.1.14 | mac | - | 黄琴まひろ | - | 872MB |
mac | - | あみたろ | - | 872MB | |
mac | - | 黄琴海月 | - | 873MB | |
win | - | つくよみちゃん | - | 823MB | |
win | - | 黄琴まひろ | - | 821MB | |
win | - | 黄琴海月 | - | 823MB | |
win | - | あみたろ | - | 821MB |
*1 つくよみちゃんはフリー素材キャラクター「つくよみちゃん」が無料公開している音声データを使用しています。(利用規約など、詳細は文末)
*2 解凍や起動が遅い場合、ウィルス対策ソフトのチェックが走っている可能性があります。ファイルやフォルダを対象外にして実行してみてください。(自己責任です)
本リポジトリをクローンして利用します。Windows では WSL2 の環境構築が必須になります。また、WSL2 上で Docker もしくは Anaconda などの仮想環境の構築が必要となります。Mac では Anaconda などの Python の仮想環境の構築が必要となります。事前準備が必要となりますが、多くの環境においてこの方法が一番高速で動きます。 GPU が無くてもそこそこ新しい CPU であれば十分動く可能性があります (下記のリアルタイム性の節を参照)。
Docker での実行は、Docker を使用するを参考にサーバを起動してください。
Anaconda の仮想環境上での実行は、サーバ開発者向けのページを参考にサーバを起動してください。
GPU を使用するとほとんどタイムラグなく変換可能です。
https://twitter.com/DannadoriYellow/status/1613483372579545088?s=20&t=7CLD79h1F3dfKiTb7M8RUQ
CPU でも最近のであればそれなりの速度で変換可能。
https://twitter.com/DannadoriYellow/status/1613553862773997569?s=20&t=7CLD79h1F3dfKiTb7M8RUQ
古い CPU( i7-4770)だと、1000msec くらいかかってしまう。
本ソフトウェアは開発元の署名しておりません。下記のように警告が出ますが、コントロールキーを押しながらアイコンをクリックすると実行できるようになります。これは Apple のセキュリティポリシーによるものです。実行は自己責任となります。
本ソフトウェアの音声合成には、フリー素材キャラクター「つくよみちゃん」が無料公開している音声データを使用しています。
■つくよみちゃんコーパス(CV.夢前黎)
https://tyc.rei-yumesaki.net/material/corpus/
© Rei Yumesaki
- リアルタイムボイスチェンジャーつくよみちゃんについては、つくよみちゃんコーパスの利用規約に準じ、次の目的で変換後の音声を使用することを禁止します。
■人を批判・攻撃すること。(「批判・攻撃」の定義は、つくよみちゃんキャラクターライセンスに準じます)
■特定の政治的立場・宗教・思想への賛同または反対を呼びかけること。
■刺激の強い表現をゾーニングなしで公開すること。
■他者に対して二次利用(素材としての利用)を許可する形で公開すること。
※鑑賞用の作品として配布・販売していただくことは問題ございません。
- リアルタイムボイスチェンジャーあみたろについては、あみたろの声素材工房様の次の利用規約に準じます。詳細はこちらです。
あみたろの声素材やコーパス読み上げ音声を使って音声モデルを作ったり、ボイスチェンジャーや声質変換などを使用して、自分の声をあみたろの声に変換して使うのもOKです。
ただしその場合は絶対に、あみたろ(もしくは小春音アミ)の声に声質変換していることを明記し、あみたろ(および小春音アミ)が話しているわけではないことが誰でもわかるようにしてください。
また、あみたろの声で話す内容は声素材の利用規約の範囲内のみとし、センシティブな発言などはしないでください。
- リアルタイムボイスチェンジャー黄琴まひろについては、れぷりかどーるの利用規約に準じます。詳細はこちらです。
本ソフトウェアの使用または使用不能により生じたいかなる直接損害・間接損害・波及的損害・結果的損害 または特別損害についても、一切責任を負いません。
MMVC トレーニング用の音声を簡単に録音できるアプリです。 Github Pages 上で実行できるため、ブラウザのみあれば様々なプラットフォームからご利用可能です。 録音したデータは、ブラウザ上に保存されます。外部に漏れることはありません。
Version | OS | フレームワーク | link | サポート VC | サイズ |
---|---|---|---|---|---|
v.1.5.2.7 | mac | ONNX(cpu), PyTorch(cpu,mps) | normal *1 | MMVC v.1.5.x, MMVC v.1.3.x, so-vits-svc 4.0, RVC | 784MB |
win | ONNX(cpu,cuda), PyTorch(cpu,cuda) | normal *1 | MMVC v.1.5.x, MMVC v.1.3.x, so-vits-svc 4.0, so-vits-svc 4.0v2, RVC, DDSP-SVC | 2860MB | |
v.1.5.2.8 | mac | ONNX(cpu), PyTorch(cpu,mps) | normal *1 | MMVC v.1.5.x, MMVC v.1.3.x, so-vits-svc 4.0, RVC | 784MB |
win | ONNX(cpu,cuda), PyTorch(cpu,cuda) | normal *1 | MMVC v.1.5.x, MMVC v.1.3.x, so-vits-svc 4.0, so-vits-svc 4.0v2, RVC, DDSP-SVC | 2860MB | |
win | ONNX(cpu,DirectML), PyTorch(cpu,cuda)*2 | normal *1 | MMVC v.1.5.x, MMVC v.1.3.x, so-vits-svc 4.0, so-vits-svc 4.0v2, RVC, DDSP-SVC | 2744MB |