forked from THUDM/GLM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement model parallel for finetune
- Loading branch information
Showing
9 changed files
with
212 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
import sys | ||
import os | ||
import torch | ||
import copy | ||
|
||
checkpoint = sys.argv[1] | ||
target_mp = int(sys.argv[2]) | ||
|
||
assert os.path.isdir(checkpoint) | ||
iteration_file = os.path.join(checkpoint, 'latest_checkpointed_iteration.txt') | ||
if os.path.exists(iteration_file): | ||
with open(iteration_file) as fin: | ||
iteration = int(fin.read().strip()) | ||
checkpoint = os.path.join(checkpoint, str(iteration)) | ||
else: | ||
iteration = None | ||
|
||
filenames = os.listdir(checkpoint) | ||
filenames = [filename for filename in filenames if filename.startswith("mp_rank_")] | ||
filenames = sorted(filenames, | ||
key=lambda x: int(x.split('_')[2])) | ||
filenames = [os.path.join(checkpoint, x) for x in filenames] | ||
|
||
if target_mp == len(filenames): | ||
print("MP size keeps the same.") | ||
exit(0) | ||
|
||
if sys.argv[1][-1] == '/': | ||
new_checkpoint = sys.argv[1][:-1] + '_MP' + sys.argv[2] | ||
else: | ||
new_checkpoint = sys.argv[1] + '_MP' + sys.argv[2] | ||
if not os.path.exists(new_checkpoint): | ||
os.mkdir(new_checkpoint) | ||
if iteration is not None: | ||
with open(os.path.join(new_checkpoint, 'latest_checkpointed_iteration.txt'), 'w') as fout: | ||
fout.write("{}\n".format(iteration)) | ||
new_checkpoint = os.path.join(new_checkpoint, str(iteration)) | ||
if not os.path.exists(new_checkpoint): | ||
os.mkdir(new_checkpoint) | ||
|
||
preserve_keys = [ | ||
"lr_scheduler", | ||
"skipped_steps", | ||
"global_steps", | ||
"global_samples", | ||
"dp_world_size", | ||
"iteration", | ||
"client_lr_scheduler", | ||
"np_rng_state", | ||
"random_rng_state", | ||
"torch_rng_state", | ||
"cuda_rng_state", | ||
"rng_tracker_states", | ||
|
||
] | ||
|
||
if target_mp < len(filenames): | ||
print("Decrease MP size.") | ||
assert len(filenames) % target_mp == 0 | ||
ratio = len(filenames) // target_mp | ||
for i in range(target_mp): | ||
start = ratio * i | ||
end = ratio * (i + 1) | ||
d = torch.load(filenames[start], | ||
map_location='cpu') | ||
for k in d.keys(): | ||
if k != 'module': | ||
if k in preserve_keys: | ||
pass | ||
elif k == "mp_world_size": | ||
d[k] = target_mp | ||
else: | ||
d[k] = None | ||
for j in range(start + 1, end): | ||
d_new = torch.load(filenames[j], | ||
map_location='cpu') | ||
for k, v in d_new['module'].items(): | ||
assert len(v.shape) < 3 | ||
if len(v.shape) == 2 and 'position' not in k: | ||
if 'query' in k: | ||
size_1 = d['module'][k].shape[0] // 3 | ||
size_2 = v.shape[0] // 3 | ||
target = d['module'][k] | ||
d['module'][k] = torch.cat([ | ||
target[:size_1, :], v[:size_2, :], | ||
target[size_1:size_1 * 2, :], v[size_2:size_2 * 2, :], | ||
target[size_1 * 2:, :], v[size_2 * 2:, :]], 0) | ||
elif 'word' in k or 'h_to_4h' in k or 'relative' in k or "r_w_bias" in k or "r_r_bias" in k: | ||
d['module'][k] = torch.cat([d['module'][k], v], 0) | ||
else: | ||
d['module'][k] = torch.cat([d['module'][k], v], 1) | ||
elif len(v.shape) == 1 and 'query_key_value' in k: | ||
size_1 = d['module'][k].shape[0] // 3 | ||
size_2 = v.shape[0] // 3 | ||
target = d['module'][k] | ||
d['module'][k] = torch.cat([ | ||
target[:size_1], v[:size_2], | ||
target[size_1:size_1 * 2], v[size_2:size_2 * 2], | ||
target[size_1 * 2:], v[size_2 * 2:]], 0) | ||
elif len(v.shape) == 1 and ('dense_h_to_4h' in k or "attention.relative" in k): | ||
d['module'][k] = torch.cat([d['module'][k], v], 0) | ||
filename = os.path.join(new_checkpoint, "mp_rank_{:02d}_model_states.pt".format(i)) | ||
torch.save(d, filename) | ||
|
||
if target_mp > len(filenames): | ||
print("Increase MP size.") | ||
assert target_mp % len(filenames) == 0 | ||
ratio = target_mp // len(filenames) | ||
for i in range(len(filenames)): | ||
start = ratio * i | ||
end = ratio * (i + 1) | ||
d = torch.load(filenames[i], | ||
map_location='cpu') | ||
for j in range(start, end): | ||
d_new = {} | ||
shift = j - start | ||
for k, v in d.items(): | ||
if k != 'module': | ||
if k in preserve_keys: | ||
d_new[k] = copy.deepcopy(d[k]) | ||
elif k == "mp_world_size": | ||
d_new[k] = target_mp | ||
else: | ||
d_new[k] = None | ||
d_new['module'] = {} | ||
with torch.no_grad(): | ||
for k, v in d['module'].items(): | ||
assert len(v.shape) < 3 | ||
if len(v.shape) == 2 and 'position' not in k: | ||
if 'query' in k: | ||
part = v.shape[0] // ratio // 3 | ||
d_new['module'][k] = torch.cat([v[shift * part:(shift + 1) * part, :].clone(), | ||
v[(shift + ratio) * part:(shift + 1 + ratio) * part, | ||
:].clone(), | ||
v[(shift + 2 * ratio) * part:(shift + 1 + 2 * ratio) * part, | ||
:].clone()], 0) | ||
elif 'word' in k or 'h_to_4h' in k or 'relative' in k or "r_w_bias" in k or "r_r_bias" in k: | ||
part = v.shape[0] // ratio | ||
d_new['module'][k] = v[shift * part:(shift + 1) * part, :].clone() | ||
else: | ||
part = v.shape[1] // ratio | ||
d_new['module'][k] = v[:, shift * part:(shift + 1) * part].clone() | ||
elif len(v.shape) == 1 and ('dense_h_to_4h' in k or "attention.relative" in k): | ||
part = v.shape[0] // ratio | ||
d_new['module'][k] = v[shift * part:(shift + 1) * part].clone() | ||
elif len(v.shape) == 1 and 'query_key_value' in k: | ||
part = v.shape[0] // ratio // 3 | ||
d_new['module'][k] = torch.cat( | ||
[v[shift * part:(shift + 1) * part].clone(), | ||
v[(shift + ratio) * part:(shift + 1 + ratio) * part].clone(), | ||
v[(shift + 2 * ratio) * part:(shift + 1 + 2 * ratio) * part].clone()], 0) | ||
else: | ||
d_new['module'][k] = v.clone() | ||
filename = os.path.join(new_checkpoint, "mp_rank_{:02d}_model_states.pt".format(j)) | ||
torch.save(d_new, filename) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.