forked from THUDM/GLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_samples.py
executable file
·321 lines (281 loc) · 13.5 KB
/
generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample Generate GPT2"""
import os
import torch
import torch.nn.functional as F
import time
from datetime import datetime
from arguments import get_args
from pretrain_glm import initialize_distributed
from pretrain_glm import set_random_seed
from pretrain_glm import get_masks_and_position_ids
from utils import load_checkpoint
from configure_data import prepare_tokenizer
from generation_utils import BeamSearchScorer
import mpu
from train_utils import get_model
from generation_utils import top_k_logits
def setup_model(args):
"""Setup model and optimizer."""
model = get_model(args, model_type="generation")
# if args.deepspeed:
# print_rank_0("DeepSpeed is enabled.")
#
# model, _, _, _ = deepspeed.initialize(
# model=model,
# model_parameters=model.parameters(),
# args=args,
# mpu=mpu,
# dist_init_required=False
# )
if args.load_pretrained is not None:
args.no_load_optim = True
args.load = args.load_pretrained
_ = load_checkpoint(
model, None, None, args, no_load_rng=True)
# if args.deepspeed:
# model = model.module
return model
def get_batch(context_tokens, device, args):
tokens = context_tokens
tokens = tokens.view(args.batch_size, -1).contiguous()
tokens = tokens.to(device)
# Get the masks and postition ids.
if args.block_lm:
attention_mask = torch.tensor([tokens.size(1)], device=device, dtype=torch.long)
position_ids = torch.arange(tokens.size(1), device=device, dtype=torch.long)
if not args.no_block_position:
block_position_ids = torch.zeros(tokens.size(1), device=device, dtype=torch.long)
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
position_ids = position_ids.unsqueeze(0)
else:
attention_mask, loss_mask, position_ids = get_masks_and_position_ids(
tokens,
args.eod_token,
reset_position_ids=False,
reset_attention_mask=False,
set_loss_mask=False,
mem_length=args.mem_length)
return tokens, attention_mask, position_ids
def sample_sequence(model, tokenizer, context_tokens, context_length, args, device, mems=None, end_tokens=None):
if not args.block_lm:
context_tokens, attention_mask, position_ids = get_batch(context_tokens, device, args)
tokens = torch.empty((args.num_beams, 0), device=context_tokens.device, dtype=torch.long)
else:
tokens = context_tokens.new_full((1, 1), tokenizer.get_command('sop').Id)
counter = 0
if mems is None:
mems = []
if end_tokens is None:
end_tokens = [args.eod_token]
if args.num_beams > 1:
beam_scorer = BeamSearchScorer(
batch_size=1,
max_length=args.out_seq_length,
num_beams=args.num_beams,
device=context_tokens.device,
length_penalty=args.length_penalty,
do_early_stopping=False,
)
beam_scores = torch.zeros(1, dtype=torch.float, device=context_tokens.device)
last_beam_num = 1
while counter < args.out_seq_length:
if counter == 0 and not args.block_lm:
next_token_logits, *mems = model(context_tokens, position_ids, attention_mask, *mems)
else:
if args.block_lm:
if args.no_block_position:
position_ids = context_tokens.new_full((last_beam_num, 1), context_length + counter)
else:
position_ids = context_tokens.new_ones(last_beam_num, 2, 1)
position_ids[:, 0] = context_length
position_ids[:, 1] = counter + 1
attention_mask = context_tokens.new_zeros([1], device=context_tokens.device, dtype=torch.long)
else:
position_ids = context_tokens.new_ones((last_beam_num, 1)) * (context_length + counter - 1)
attention_mask = context_tokens.new_ones(last_beam_num, 1, 1, args.mem_length + 1,
device=context_tokens.device, dtype=torch.float)
last_token = tokens[:, -1:]
next_token_logits, *mems = model(last_token, position_ids, attention_mask, *mems)
next_token_logits = next_token_logits[:, -1]
if args.num_beams > 1:
next_token_scores = F.log_softmax(next_token_logits, dim=-1)
next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores)
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(1, last_beam_num * vocab_size)
probs = F.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=2 * args.num_beams)
next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
next_tokens = torch.gather(next_tokens, -1, _indices)
next_indices = next_tokens // vocab_size
next_tokens = next_tokens % vocab_size
# stateless
tokens = tokens.expand((args.num_beams, -1))
beam_outputs = beam_scorer.process(
tokens,
next_token_scores,
next_tokens,
next_indices,
eos_token_id=end_tokens,
mems=mems
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
beam_next_tokens = beam_next_tokens.unsqueeze(-1)
tokens = torch.cat([tokens[beam_idx, :], beam_next_tokens], dim=-1)
mems = [mem[beam_idx] for mem in mems] if mems else None
if beam_scorer.is_done:
break
last_beam_num = args.num_beams
else:
next_token_logits /= args.temperature
next_token_logits = top_k_logits(next_token_logits, top_k=args.top_k, top_p=args.top_p)
log_probs = F.softmax(next_token_logits, dim=-1)
prev = torch.multinomial(log_probs, num_samples=1)[0]
is_end = prev.item() in end_tokens
if is_end:
break
prev = prev.view(1, 1)
tokens = prev if tokens is None else torch.cat((tokens, prev), dim=1)
counter += 1
if not args.block_lm and mpu.get_model_parallel_rank() == 0 and counter % 16 == 0:
output_tokens_list = tokens.view(-1).contiguous()
decode_tokens = tokenizer.DecodeIds(output_tokens_list.tolist())
if mpu.get_model_parallel_rank() == 0 and (counter % 128 == 0 or is_end):
os.system('clear')
trim_decode_tokens = decode_tokens
print(trim_decode_tokens, flush=True)
if args.num_beams > 1:
tokens, mems, _ = beam_scorer.finalize(tokens, beam_scores, next_tokens, next_indices, eos_token_id=args.eod_token,
mems=mems)
return torch.cat((context_tokens, tokens), dim=1), mems
def read_context(tokenizer, args, output):
terminate_runs, skip_run = 0, 0
if mpu.get_model_parallel_rank() == 0:
while True:
raw_text = input("\nContext prompt (stop to exit) >>> ")
if not raw_text:
print('Prompt should not be empty!')
continue
if raw_text == "stop":
terminate_runs = 1
break
generation_mask = '[gMASK]' if args.task_mask else '[MASK]'
if args.block_lm and 'MASK]' not in raw_text:
raw_text += ' ' + generation_mask
output.write(raw_text)
context_tokens = tokenizer.EncodeAsIds(raw_text).tokenization
if args.block_lm:
context_tokens = [tokenizer.get_command('ENC').Id] + context_tokens
if not raw_text.endswith('[gMASK]'):
context_tokens = context_tokens + [tokenizer.get_command('eos').Id]
context_length = len(context_tokens)
if context_length >= args.seq_length:
print("\nContext length", context_length,
"\nPlease give smaller context than the window length!")
continue
break
else:
context_length = 0
terminate_runs_tensor = torch.cuda.LongTensor([terminate_runs])
torch.distributed.broadcast(terminate_runs_tensor, mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
terminate_runs = terminate_runs_tensor[0].item()
if terminate_runs == 1:
return terminate_runs, None, None, None
context_length_tensor = torch.cuda.LongTensor([context_length])
torch.distributed.broadcast(context_length_tensor, mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
context_length = context_length_tensor[0].item()
if mpu.get_model_parallel_rank() == 0:
context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
else:
context_tokens_tensor = torch.cuda.LongTensor([0] * context_length)
torch.distributed.broadcast(context_tokens_tensor, mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
if mpu.get_model_parallel_rank() != 0:
raw_text = tokenizer.DecodeIds(context_tokens_tensor.tolist())
return terminate_runs, raw_text, context_tokens_tensor, context_length
def generate_samples(model, tokenizer, args, device):
model.eval()
output_path = "./samples"
if not os.path.exists(output_path):
os.makedirs(output_path)
output_path = os.path.join(output_path, f"sample-{datetime.now().strftime('%m-%d-%H-%M')}.txt")
with torch.no_grad(), open(output_path, "w") as output:
while True:
torch.distributed.barrier(group=mpu.get_model_parallel_group())
terminate_runs, raw_text, context_tokens_tensor, context_length = read_context(tokenizer, args, output)
if terminate_runs == 1:
return
start_time = time.time()
if args.block_lm:
mems = []
tokens, attention_mask, position_ids = get_batch(context_tokens_tensor, device, args)
mask_tokens = ['MASK', 'sMASK', 'gMASK'] if args.task_mask else ['MASK']
mask_tokens = [tokenizer.get_command(token).Id for token in mask_tokens]
end_tokens = [tokenizer.get_command('eop').Id, args.eod_token]
mask_positions = []
for token in mask_tokens:
mask_positions += (context_tokens_tensor == token).nonzero(as_tuple=True)[0].tolist()
mask_positions.sort()
if args.no_block_position:
for mask_position in mask_positions:
position_ids[0, mask_position + 1:] += args.out_seq_length
_, *mems = model(tokens, position_ids, attention_mask, *mems)
for mask_position in mask_positions:
if args.no_block_position:
position = position_ids[0, mask_position].item()
else:
position = mask_position
tokens, mems = sample_sequence(model, tokenizer, tokens, position,
args, device, mems=mems, end_tokens=end_tokens)
else:
tokens, _ = sample_sequence(model, tokenizer, context_tokens_tensor, context_length, args, device)
output_tokens_list = tokens.view(-1).contiguous()
if mpu.get_model_parallel_rank() == 0:
os.system('clear')
print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
print("\nContext:", raw_text, flush=True)
decode_tokens = tokenizer.DecodeIds(output_tokens_list[context_length:].tolist())
trim_decode_tokens = decode_tokens
print("\nGLM:", trim_decode_tokens, flush=True)
output.write(trim_decode_tokens + "\n")
torch.distributed.barrier(group=mpu.get_model_parallel_group())
def main():
"""Main training program."""
print('Generate Samples')
# Disable CuDNN.
torch.backends.cudnn.enabled = False
# Arguments.
args = get_args()
args.mem_length = args.seq_length + args.mem_length - 1
# Pytorch distributed.
initialize_distributed(args)
# Random seeds for reproducability.
set_random_seed(args.seed)
# get the tokenizer
tokenizer = prepare_tokenizer(args)
# Model, optimizer, and learning rate.
model = setup_model(args)
# setting default batch size to 1
args.batch_size = 1
# generate samples
generate_samples(model, tokenizer, args, torch.cuda.current_device())
if __name__ == "__main__":
main()