1 Star 0 Fork 0

小来humbert/w9-luoqiang-489462236

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
create_data.py 8.37 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Convert the Oxford pet dataset to TFRecord for object_detection.
See: O. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar
Cats and Dogs
IEEE Conference on Computer Vision and Pattern Recognition, 2012
http://www.robots.ox.ac.uk/~vgg/data/pets/
Example usage:
python object_detection/dataset_tools/create_pet_tf_record.py \
--data_dir=/home/user/pet \
--output_dir=/home/user/pet/output
"""
import hashlib
import io
import logging
import os
import random
import re
from lxml import etree
import numpy as np
import PIL.Image
import tensorflow as tf
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util
flags = tf.app.flags
flags.DEFINE_string('data_dir', '', 'Root directory to raw pet dataset.')
flags.DEFINE_string('output_dir', '', 'Path to directory to output TFRecords.')
flags.DEFINE_string('label_map_path', 'data/pet_label_map.pbtxt',
'Path to label map proto')
FLAGS = flags.FLAGS
def dict_to_tf_example(data,
label_map_dict,
image_subdirectory,
ignore_difficult_instances=False):
"""Convert XML derived dict to tf.Example proto.
Notice that this function normalizes the bounding box coordinates provided
by the raw data.
Args:
data: dict holding PASCAL XML fields for a single image (obtained by
running dataset_util.recursive_parse_xml_to_dict)
mask_path: String path to PNG encoded mask.
label_map_dict: A map from string label names to integers ids.
image_subdirectory: String specifying subdirectory within the
Pascal dataset directory holding the actual image data.
ignore_difficult_instances: Whether to skip difficult instances in the
dataset (default: False).
faces_only: If True, generates bounding boxes for pet faces. Otherwise
generates bounding boxes (as well as segmentations for full pet bodies).
mask_type: 'numerical' or 'png'. 'png' is recommended because it leads to
smaller file sizes.
Returns:
example: The converted tf.Example.
Raises:
ValueError: if the image pointed to by data['filename'] is not a valid JPEG
"""
img_path = os.path.join(image_subdirectory, data['filename'].split('.')[0]+'.jpg')
with tf.gfile.GFile(img_path, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = PIL.Image.open(encoded_jpg_io)
if image.format != 'JPEG':
raise ValueError('Image format not JPEG')
key = hashlib.sha256(encoded_jpg).hexdigest()
width = int(data['size']['width'])
height = int(data['size']['height'])
xmins = []
ymins = []
xmaxs = []
ymaxs = []
classes = []
classes_text = []
truncated = []
poses = []
difficult_obj = []
if 'object' in data:
for obj in data['object']:
difficult = bool(int(obj['difficult']))
if ignore_difficult_instances and difficult:
continue
difficult_obj.append(int(difficult))
xmin = float(obj['bndbox']['xmin'])
xmax = float(obj['bndbox']['xmax'])
ymin = float(obj['bndbox']['ymin'])
ymax = float(obj['bndbox']['ymax'])
xmins.append(xmin / width)
ymins.append(ymin / height)
xmaxs.append(xmax / width)
ymaxs.append(ymax / height)
classes_text.append(obj['name'].encode('utf8'))
classes.append(label_map_dict[obj['name']])
truncated.append(int(obj['truncated']))
poses.append(obj['pose'].encode('utf8'))
feature_dict = {
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(
data['filename'].split('.')[0].encode('utf8')),
'image/source_id': dataset_util.bytes_feature(
data['filename'].split('.')[0].encode('utf8')),
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
'image/object/truncated': dataset_util.int64_list_feature(truncated),
'image/object/view': dataset_util.bytes_list_feature(poses),
}
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
return example
def create_tf_record(output_filename,
label_map_dict,
annotations_dir,
image_dir,
examples):
"""Creates a TFRecord file from examples.
Args:
output_filename: Path to where output file is saved.
label_map_dict: The label map dictionary.
annotations_dir: Directory where annotation files are stored.
image_dir: Directory where image files are stored.
examples: Examples to parse and save to tf record.
faces_only: If True, generates bounding boxes for pet faces. Otherwise
generates bounding boxes (as well as segmentations for full pet bodies).
mask_type: 'numerical' or 'png'. 'png' is recommended because it leads to
smaller file sizes.
"""
writer = tf.python_io.TFRecordWriter(output_filename)
for idx, example in enumerate(examples):
if idx % 100 == 0:
logging.info('On image %d of %d', idx, len(examples))
xml_path = os.path.join(annotations_dir, 'xmls', example + '.xml')
if not os.path.exists(xml_path):
logging.warning('Could not find %s, ignoring example.', xml_path)
continue
with tf.gfile.GFile(xml_path, 'r') as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
try:
tf_example = dict_to_tf_example(
data,
label_map_dict,
image_dir)
writer.write(tf_example.SerializeToString())
except ValueError:
logging.warning('Invalid example: %s, ignoring.', xml_path)
writer.close()
# TODO(derekjchow): Add test for pet/PASCAL main files.
def main(_):
data_dir = FLAGS.data_dir
label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path)
logging.info('Reading from Pet dataset.')
image_dir = os.path.join(data_dir, 'images')
annotations_dir = os.path.join(data_dir, 'annotations')
examples_path = os.path.join(annotations_dir, 'xmls')
examples_list=[]
for root, dirs, files in os.walk(examples_path):
for file in files:
examples_list.append(file.split('.')[0])
# Test images are not included in the downloaded data set, so we shall perform
# our own split.
random.seed(42)
random.shuffle(examples_list)
num_examples = len(examples_list)
num_train = int(0.7 * num_examples)
train_examples = examples_list[:num_train]
val_examples = examples_list[num_train:]
logging.info('%d training and %d validation examples.',
len(train_examples), len(val_examples))
train_output_path = os.path.join(FLAGS.output_dir, 'pet_train.record')
val_output_path = os.path.join(FLAGS.output_dir, 'pet_val.record')
create_tf_record(
train_output_path,
label_map_dict,
annotations_dir,
image_dir,
train_examples)
create_tf_record(
val_output_path,
label_map_dict,
annotations_dir,
image_dir,
val_examples)
if __name__ == '__main__':
tf.app.run()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/xitaida/w9-luoqiang-489462236.git
git@gitee.com:xitaida/w9-luoqiang-489462236.git
xitaida
w9-luoqiang-489462236
w9-luoqiang-489462236
master

搜索帮助