Skip to content

Instantly share code, notes, and snippets.

@TF3RDL
Last active September 8, 2024 15:42
Show Gist options
  • Save TF3RDL/15326358806cabe3d69be792ff0012c7 to your computer and use it in GitHub Desktop.
Save TF3RDL/15326358806cabe3d69be792ff0012c7 to your computer and use it in GitHub Desktop.
A collection of audio analysis algorithms and some helper functions
/**
* A collection of audio analysis algorithms and some helper functions
*/
// p5.js map function
function map(x, min, max, targetMin, targetMax) {
return (x - min) / (max - min) * (targetMax - targetMin) + targetMin;
}
function clamp(x, min, max) {
return Math.min(Math.max(x, min), max);
}
function idxWrapOver(x, length) {
return (x % length + length) % length;
}
function getClippedIdx(x, length, mode = 'clip') {
switch (mode) {
case 'clip':
return clamp(x, 0, length-1);
case 'periodic':
return idxWrapOver(x, length);
case 'mirror':
const period = 2 * (length - 1);
const i = idxWrapOver(x, period);
return (i > length - 1) ? period - i : i;
default:
return x;
}
}
function smooth(array, amount = 2, parameter, filterType, idxClipMode) {
const kernel = amount + 1;
let filter = new Array(2 * kernel + 1).fill(0);
filter = filter.map((_, i, arr) => {
let x = i * 2 / (arr.length-1) - 1;
return applyWindow(x, filterType, parameter);
});
let norm = filter.reduce((acc, val) => acc + val);
return array.map((_, idx, arr) => {
let segmentStart = idx - kernel;
let sum = 0;
for (let i = 0; i < filter.length; i++) {
sum += (segmentStart+i >= 0 && segmentStart+i < arr.length) || idxClipMode !== 'zero' ? arr[getClippedIdx(segmentStart+i, arr.length, idxClipMode)]*filter[i]/norm : 0;
}
return sum;
});
}
// dB convertion
function linearTodB(x) {
return 20*Math.log10(x);
}
function dBToLinear(x) {
return 10 ** (x/20);
}
// Linear interpolation (used for FFT bin interpolation)
function lerp(x, y, z) {
return x*(1-z)+y*z;
}
function cubicInterp(x, y, z, w, i, tension = 0) {
const tangentFactor = 1 - tension,
m1 = tangentFactor * (z - x) / 2,
m2 = tangentFactor * (w - y) / 2,
squared = i ** 2,
cubed = i ** 3;
return (2 * cubed - 3 * squared + 1) * y + (cubed - 2 * squared + i) * m1 + (-2 * cubed + 3 * squared) * z + (cubed - squared) * m2;
}
function interp(arr, x, interpMode, interpParameter = 0, nthRoot = 1, logarithmic = false, clipMode = 'clip') {
const intX = Math.trunc(x);
switch (interpMode) {
case 'nearest neighbor':
return arr[getClippedIdx(Math.round(x), arr.length, clipMode)];
case 'cubic':
return absInvAscale(cubicInterp(absAscale(arr[getClippedIdx(intX-1, arr.length, clipMode)], nthRoot, logarithmic),
absAscale(arr[getClippedIdx(intX, arr.length, clipMode)], nthRoot, logarithmic),
absAscale(arr[getClippedIdx(intX+1, arr.length, clipMode)], nthRoot, logarithmic),
absAscale(arr[getClippedIdx(intX+2, arr.length, clipMode)], nthRoot, logarithmic), x - intX, interpParameter), nthRoot, logarithmic);
default:
return absInvAscale(lerp((absAscale(arr[getClippedIdx(intX, arr.length, clipMode)], nthRoot, logarithmic)),
(absAscale(arr[getClippedIdx(intX+1, arr.length, clipMode)], nthRoot, logarithmic)), x - intX), nthRoot, logarithmic);
}
}
function calcSmoothingTimeConstant(targetArr, sourceArr, factor = 0.5) {
for (let i = 0; i < targetArr.length; i++) {
targetArr[i] = (isNaN(targetArr[i]) ? 0 : targetArr[i])*(factor)+(isNaN(sourceArr[i]) ? 0 : sourceArr[i])*(1-factor);
}
}
function calcFreqTilt(x, centerFreq = 440, amount = 3) {
if (Math.abs(amount) > 0)
return 10 ** (Math.log2(x/centerFreq)*amount/20);
else
return 1;
}
function applyWeight(x, weightAmount = 1, weightType = 'a') {
const f2 = x ** 2;
switch (weightType) {
case 'a':
return (1.2588966 * 148840000 * (f2 ** 2) /
((f2 + 424.36) * Math.sqrt((f2 + 11599.29) * (f2 + 544496.41)) * (f2 + 148840000))) ** weightAmount;
case 'b':
return (1.019764760044717 * 148840000 * (x ** 3) /
((f2 + 424.36) * Math.sqrt(f2 + 25122.25) * (f2 + 148840000))) ** weightAmount;
case 'c':
return (1.0069316688518042 * 148840000 * f2 /
((f2 + 424.36) * (f2 + 148840000))) ** weightAmount;
case 'd':
return ((x / 6.8966888496476e-5) * Math.sqrt(
(
((1037918.48 - f2)*(1037918.48 - f2) + 1080768.16*f2) /
((9837328 - f2)*(9837328 - f2) + 11723776*f2)
) / ((f2 + 79919.29) * (f2 + 1345600))
)) ** weightAmount;
case 'm':
const h1 = -4.737338981378384e-24*(f2 ** 3) + 2.043828333606125e-15*(f2 ** 2) - 1.363894795463638e-7*f2 + 1,
h2 = 1.306612257412824e-19*(x ** 5) - 2.118150887518656e-11*(x ** 3) + 5.559488023498642e-4*x;
return (8.128305161640991 * 1.246332637532143e-4 * x / Math.hypot(h1, h2)) ** weightAmount;
default:
return 1;
}
}
/**
* Apply window function
* @param {number} x - The position of the window function from -1 to 1
* @param {string} [windowType=Hann] - The specified window function to use
* @param {number} [windowParameter=1] - The parameter of the window function (Adjustable window functions only)
* @param {boolean} [truncate=true] - Zeroes out if x is more than 1 or less than -1
* @param {number} [windowSkew=0] - Skew the window function to make symmetric windows asymmetric
* @returns {number} The gain of window function
*/
function applyWindow(posX, windowType = 'Hann', windowParameter = 1, truncate = true, windowSkew = 0) {
let x = windowSkew > 0 ? ((posX/2-0.5)/(1-(posX/2-0.5)*10*(windowSkew ** 2)))/(1/(1+10*(windowSkew ** 2)))*2+1 :
((posX/2+0.5)/(1+(posX/2+0.5)*10*(windowSkew ** 2)))/(1/(1+10*(windowSkew ** 2)))*2-1;
if (truncate && Math.abs(x) > 1)
return 0;
switch (windowType.toLowerCase()) {
default:
return 1;
case 'hanning':
case 'cosine squared':
case 'hann':
return Math.cos(x*Math.PI/2) ** 2;
case 'raised cosine':
case 'hamming':
return 0.54 + 0.46 * Math.cos(x*Math.PI);
case 'power of sine':
return Math.cos(x*Math.PI/2) ** windowParameter;
case 'tapered cosine':
case 'tukey':
return Math.abs(x) <= 1-windowParameter ? 1 :
(x > 0 ?
(-Math.sin((x-1)*Math.PI/windowParameter/2)) ** 2 :
Math.sin((x+1)*Math.PI/windowParameter/2) ** 2);
case 'blackman':
return 0.42 + 0.5 * Math.cos(x*Math.PI) + 0.08 * Math.cos(x*Math.PI*2);
case 'nuttall':
return 0.355768 + 0.487396 * Math.cos(x*Math.PI) + 0.144232 * Math.cos(2*x*Math.PI) + 0.012604 * Math.cos(3*x*Math.PI);
case 'flat top':
case 'flattop':
return 0.21557895 + 0.41663158 * Math.cos(x*Math.PI) + 0.277263158 * Math.cos(2*x*Math.PI) + 0.083578947 * Math.cos(3*x*Math.PI) + 0.006947368 * Math.cos(4*x*Math.PI);
case 'kaiser':
return Math.cosh(Math.sqrt(1-(x ** 2))*(windowParameter ** 2))/Math.cosh(windowParameter ** 2);
case 'gauss':
case 'gaussian':
return Math.exp(-(windowParameter ** 2)*(x ** 2));
case 'bartlett':
case 'triangle':
case 'triangular':
return 1 - Math.abs(x);
case 'poisson':
case 'exponential':
return Math.exp(-Math.abs(x * (windowParameter ** 2)));
case 'hyperbolic secant':
case 'sech':
return 1/Math.cosh(x * (windowParameter ** 2));
case 'quadratic spline':
return Math.abs(x) <= 0.5 ? -((x*Math.sqrt(2)) ** 2)+1 : (Math.abs(x*Math.sqrt(2))-Math.sqrt(2)) ** 2;
case 'parzen':
return Math.abs(x) > 0.5 ? -2 * ((-1 + Math.abs(x)) ** 3) : 1 - 24 * (Math.abs(x/2) ** 2) + 48 * (Math.abs(x/2) ** 3);
case 'welch':
return 1 - (x ** 2);
}
}
/**
* Frequency scaling
*/
function fscale(x, freqScale = 'logarithmic', freqSkew = 0.5) {
switch(freqScale.toLowerCase()) {
default:
return x;
case 'log':
case 'logarithmic':
return Math.log2(x);
case 'mel':
return Math.log2(1+x/700);
case 'critical bands':
case 'bark':
return (26.81*x)/(1960+x)-0.53;
case 'equivalent rectangular bandwidth':
case 'erb':
return Math.log2(1+0.00437*x);
case 'cam':
case 'cams':
return Math.log2((x/1000+0.312)/(x/1000+14.675));
case 'sinh':
case 'arcsinh':
case 'asinh':
return Math.asinh(x/(10 ** (freqSkew*4)));
case 'shifted log':
case 'shifted logarithmic':
return Math.log2((10 ** (freqSkew*4))+x);
case 'nth root':
return x ** (1/(11-freqSkew*10));
case 'negative exponential':
return -(2 ** (-x/(2 ** (7+freqSkew*8))));
case 'adjustable bark':
return (26.81 * x)/((10 ** (freqSkew*4)) + x);
case 'period':
return 1/x;
}
}
function invFscale(x, freqScale = 'logarithmic', freqSkew = 0.5) {
switch(freqScale.toLowerCase()) {
default:
return x;
case 'log':
case 'logarithmic':
return 2 ** x;
case 'mel':
return 700 * ((2 ** x) - 1);
case 'critical bands':
case 'bark':
return 1960 / (26.81/(x+0.53)-1);
case 'equivalent rectangular bandwidth':
case 'erb':
return (1/0.00437) * ((2 ** x) - 1);
case 'cam':
case 'cams':
return (14.675 * (2 ** x) - 0.312)/(1-(2 ** x)) * 1000;
case 'sinh':
case 'arcsinh':
case 'asinh':
return Math.sinh(x)*(10 ** (freqSkew*4));
case 'shifted log':
case 'shifted logarithmic':
return (2 ** x) - (10 ** (freqSkew*4));
case 'nth root':
return x ** ((11-freqSkew*10));
case 'negative exponential':
return -Math.log2(-x)*(2 ** (7+freqSkew*8));
case 'adjustable bark':
return (10 ** (freqSkew*4)) / (26.81 / x - 1);
case 'period':
return 1/x;
}
}
// Amplitude scaling
function ascale(x, nthRoot = 1, logarithmic = false, dBRange = 70, useAbsoluteValue = true) {
if (logarithmic)
return map(20*Math.log10(x), -dBRange, 0, 0, 1);
else
return map(x ** (1/nthRoot), useAbsoluteValue ? 0 : dBToLinear(-dBRange) ** (1/nthRoot), 1, 0, 1);
}
function absAscale(x, nthRoot = 1, logarithmic = false) {
if (logarithmic)
return 20 * Math.log10(x);
else
return x ** (1/nthRoot);
}
function absInvAscale(x, nthRoot = 1, logarithmic = false) {
if (logarithmic)
return 10 ** (x/20);
else
return x ** (nthRoot);
}
// Hz and FFT bin conversion
function hertzToFFTBin(x, y = 'round', bufferSize = 4096, sampleRate = 44100) {
const bin = x * bufferSize / sampleRate;
let func = y;
if (!['floor','ceil','trunc'].includes(func))
func = 'round'; // always use round if you specify an invalid/undefined value
return Math[func](bin);
}
function fftBinToHertz(x, bufferSize = 4096, sampleRate = 44100) {
return x * sampleRate / bufferSize;
}
// Frequency bands generator
function generateFreqBands(N = 128, low = 20, high = 20000, freqScale, freqSkew, bandwidth = 0.5) {
let freqArray = [];
for (let i = 0; i < N; i++) {
freqArray.push({
lo: invFscale( map(i-bandwidth, 0, N-1, fscale(low, freqScale, freqSkew), fscale(high, freqScale, freqSkew)), freqScale, freqSkew),
ctr: invFscale( map(i, 0, N-1, fscale(low, freqScale, freqSkew), fscale(high, freqScale, freqSkew)), freqScale, freqSkew),
hi: invFscale( map(i+bandwidth, 0, N-1, fscale(low, freqScale, freqSkew), fscale(high, freqScale, freqSkew)), freqScale, freqSkew)
});
}
return freqArray;
}
function generateOctaveBands(bandsPerOctave = 12, lowerNote = 4, higherNote = 124, detune = 0, bandwidth = 0.5) {
const root24 = 2 ** ( 1 / 24 );
const c0 = 440 * root24 ** -114; // ~16.35 Hz
const groupNotes = 24/bandsPerOctave;
let bands = [];
for (let i = Math.round(lowerNote*2/groupNotes); i <= Math.round(higherNote*2/groupNotes); i++) {
bands.push({
lo: c0 * root24 ** ((i-bandwidth)*groupNotes+detune),
ctr: c0 * root24 ** (i*groupNotes+detune),
hi: c0 * root24 ** ((i+bandwidth)*groupNotes+detune)
});
}
return bands;
}
// Calculate band frequencies, method derived from Avee Player
function generateAveePlayerFreqs(N, minFreq = 20, maxFreq = 20000, hzLinearFactor = 0, bandwidth = 0.5) {
const freqBands = [];
for (let i = 0; i < N; i++) {
freqBands[i] = {
lo: logSpace(minFreq, maxFreq, i-bandwidth, N-1, hzLinearFactor),
ctr: logSpace(minFreq, maxFreq, i, N-1, hzLinearFactor),
hi: logSpace(minFreq, maxFreq, i+bandwidth, N-1, hzLinearFactor)
};
}
return freqBands;
}
function logSpace(x, y, z, w, l) {
const centerFreq = x * ((y/x) ** (z/w));
return centerFreq * (1-l) + (x + ((y - x) * z * (1/w))) * l;
}
/**
* Generate frequency bands with piecewise lin-log scales
* This function behaves similarly to KeyboardAudioVisualizer by DarthAffe
* Dependent on both sample rate and DFT buffer length
*/
function generatePiecewiseLinLogBands(N = 64, low = 20, high = 15000, freqScale = 'log', freqSkew = 0.7, bufferSize = 2048, sampleRate = 44100) {
const fromIdx = hertzToFFTBin(low, 'round', bufferSize, sampleRate),
toIdx = hertzToFFTBin(high, 'round', bufferSize, sampleRate),
usableSrcData = Math.max(N, (toIdx - fromIdx) + 1),
fftBinsPerBand = usableSrcData / N,
ratio = usableSrcData ** (1/N);
let bands = [],
fftBinCounter = 0,
logCalculation = 1,
idx = fromIdx;
for (let i = 0; i < N; i++) {
let count;
switch (freqScale) {
case 'linear':
fftBinCounter += fftBinsPerBand;
count = fftBinCounter;
bands.push({
lo: fftBinToHertz(idx, bufferSize, sampleRate),
ctr: fftBinToHertz(idx+count/2, bufferSize, sampleRate),
hi: fftBinToHertz(idx+count, bufferSize, sampleRate)
});
idx += count;
fftBinCounter -= count;
break;
case 'nth root':
const gamma = 11-freqSkew*10;
count = Math.max(1, ((((i + 1)/N) ** gamma)*usableSrcData) - idx);
bands.push({
lo: fftBinToHertz(idx, bufferSize, sampleRate),
ctr: fftBinToHertz(idx+count/2, bufferSize, sampleRate),
hi: fftBinToHertz(idx+count, bufferSize, sampleRate)
});
idx += count;
break;
default:
logCalculation *= ratio;
count = Math.max(1, Math.trunc(logCalculation) - idx);
bands.push({
lo: fftBinToHertz(idx, bufferSize, sampleRate),
ctr: fftBinToHertz(idx+count/2, bufferSize, sampleRate),
hi: fftBinToHertz(idx+count, bufferSize, sampleRate)
});
idx += count;
}
}
return bands;
}
/**
* Pseudo-logarithmic frequency bands, derived from Classic Spectrum Analyzer for Winamp
* This function generates pseudo-logarithmic bands that changes its frequency scale depending on frequency range, the number of bands, the specified FFT size and the sample rate
*/
function generatePseudoLogBands(N = 128, low = 0, high = 16000, freqSkew = 0, bufferSize = 2048, sampleRate = 44100) {
// LogBarValueTable part
let pnBarTable = new Array(N).fill(1),
numUnassigned = bufferSize - N,
numLastAssign = N - 1,
bands = [];
const fDiv = numUnassigned ** (1/N*(1-freqSkew)),
nyquist = sampleRate / 2,
delta = (high - low) / 2; // Delta between specified high frequencies and low frequencies, to naively allows setting the starting frequency from the first FFT bin
// make the last bucket stop at the specified frequency
if (nyquist > delta) {
const maxFreqDiv = nyquist / (nyquist - delta);
if (1 + numUnassigned - numUnassigned / fDiv < bufferSize / maxFreqDiv) {
pnBarTable[N-1] = Math.trunc(bufferSize / maxFreqDiv);
numUnassigned = bufferSize - N + 1;
numUnassigned -= pnBarTable[N-1];
numLastAssign -= 1;
}
}
while (numUnassigned > 0) {
let nAssign = Math.max(Math.trunc(numUnassigned - numUnassigned / fDiv + 0.5), 1);
// currently O(N) complexity, which is slow on higher number of bands settings
for (let nW = numLastAssign; nW >= 0 && numUnassigned > 0; nW--) {
pnBarTable[nW] += nAssign;
numUnassigned -= nAssign;
nAssign = Math.max(Math.trunc(numUnassigned - numUnassigned / fDiv + 0.5), 1);
}
}
// done with LogBarValueTable thing
let currentFreq = hertzToFFTBin(low, 'round', bufferSize, sampleRate); // starts with approximate frequency from specified low frequency to display
for (let i = 0; i < N; i++) {
const nextFreq = currentFreq + pnBarTable[i];
bands.push({
lo: fftBinToHertz(currentFreq, bufferSize, sampleRate),
ctr: fftBinToHertz(currentFreq + (nextFreq - currentFreq)/2, bufferSize, sampleRate),
hi: fftBinToHertz(nextFreq, bufferSize, sampleRate)
});
currentFreq = nextFreq;
}
return bands;
}
// Calculate the FFT
function calcFFT(input) {
let fft = input.map(x => x);
let fft2 = input.map(x => x);
transform(fft, fft2);
let output = new Array(Math.round(fft.length/2)).fill(0);
for (let i = 0; i < output.length; i++) {
output[i] = Math.hypot(fft[i], fft2[i])/(fft.length);
}
return output;
}
function calcComplexFFT(input) {
let fft = input.map(x => x);
let fft2 = input.map(x => x);
transform(fft, fft2);
return input.map((_, i, arr) => {
return {
re: fft[i]/(arr.length/2),
im: fft2[i]/(arr.length/2),
magnitude: Math.hypot(fft[i], fft2[i])/(arr.length/2),
phase: Math.atan2(fft2[i], fft[i])
};
});
}
function calcGoertzel(waveform, coeff) {
let f1 = 0, f2 = 0, sine;
for (const x of waveform) {
sine = x + coeff * f1 - f2;
f2 = f1;
f1 = sine;
}
return Math.sqrt(f1 ** 2 + f2 ** 2 - coeff * f1 * f2) / waveform.length;
}
function calcBandpower(fftCoeffs, dataIdx, endIdx, average = true, useRMS = true, sum = false, interpolate = false, interpMode = 'linear', interpParam = 0, interpNthRoot = 1, interpLogScale = false) {
let amp = 0;
const low = clamp(dataIdx, 0, fftCoeffs.length-1),
high = clamp(endIdx, 0, fftCoeffs.length-1),
diff = endIdx - dataIdx + 1;
if (interpolate) {
const xFloat = low,
xInt = Math.trunc(xFloat);
if (xFloat - xInt <= 0)
amp = fftCoeffs[dataIdx];
else
amp = interp(fftCoeffs, xFloat, interpMode, interpParam, interpNthRoot, interpLogScale);
}
else {
for (let i = low; i <= high; i++) {
if (average)
amp += fftCoeffs[i] ** (useRMS ? 2 : 1);
else
amp = Math.max(amp, fftCoeffs[i]);
}
if (average)
amp = useRMS ? Math.sqrt(amp/(sum ? 1 : diff)) : amp/(sum ? 1 : diff);
}
return amp;
}
/**
* Calculate frequency bands power spectrum from FFT
*
* @param {number[]} fftCoeffs - The array of FFT magnitude coefficients
* @param {string} [mode=interpolate] - FFT to frequency bands spectrum mode, setting to interpolate to do FFT bin interpolation, otherwise to insert zeroes, or bandpower to get average amount of amplitude between 2 frequency boundaries
* @param {boolean} [average=true] - Average to sum FFT coefficients into bandpower coefficient
* @param {FrequencyBands[]} [hzArray=generateFreqBands()] - The array of frequency bands in Hz
* @returns {number[]} Output of frequency bands spectrum from linearly-spaced FFT coefficients
*/
function calcSpectrum(fftCoeffs, mode = 'interpolate', average = true, useRMS = true, sum = false, fftBinInterpolation, interpParam, interpNthRoot, interpLogScale, hzArray = generateFreqBands(), bufferSize = fftCoeffs.length*2, sampleRate = 44100) {
let boundArr = [];
let nBars = 0;
for (let i = 0; i < hzArray.length; i++) {
let minIdx = hertzToFFTBin(hzArray[i].lo, mode === 'bandpower' || mode === 'gaps' ? 'round' : 'ceil', bufferSize, sampleRate);
let maxIdx = hertzToFFTBin(hzArray[i].hi, mode === 'bandpower' || mode === 'gaps' ? 'round' : 'floor', bufferSize, sampleRate);
let minIdx2 = hertzToFFTBin(hzArray[i].lo, 'floor', bufferSize, sampleRate);
if (mode === 'interpolate' && fftBinInterpolation !== 'zero insertion') {
if (minIdx > maxIdx)
nBars++;
else {
if (nBars > 1) {
for (let j = 1; j <= nBars; j++)
boundArr[boundArr.length - j].factor = (nBars - j) / nBars;
}
nBars = 1;
}
}
boundArr.push({
dataIdx: minIdx <= maxIdx || mode !== 'interpolate' || fftBinInterpolation === 'zero insertion' ? minIdx : minIdx2,
endIdx: maxIdx - (mode === 'gaps'),
factor: 0,
interpolate: minIdx > maxIdx && mode === 'interpolate' && fftBinInterpolation !== 'zero insertion'
});
}
return boundArr.map((x) => {
return calcBandpower(fftCoeffs, x.dataIdx + x.factor, x.endIdx, average, useRMS, sum, x.interpolate, fftBinInterpolation, interpParam, interpNthRoot, interpLogScale);
});
}
/**
* Calculates spectrum from frequency bands by computing DTFT
* The algorithm for calculating full spectrum using this have a O(N^2) complexity
* @param {number[]} waveform - An array of audio data
* @param {number} [octavesResolution=12] - Constant-Q transform frequency resolution
* @param {string} [cqtMode=cbw] - Mode when comes to calculating per-bin bandwidth. Setting it to 'cbw' makes it constant-bandwidth, resembling Spectrum2 from Avee Player
* @param (number) [cqtAlignment=1] - Temporal alignment of CQT/VQT bins, setting it to default value makes it causal and negative values makes it anti-causal
* @param (number) [timeResolution=1000] - Desired time resolution at the center frequency specified by desiredTresAtFreq
* @param (number) [desiredTresAtFreq=50] - The center frequency where VQT time resolution matches to timeResolution parameter in milliseconds
* @param (string) frequencyScale - The specified frequency scale to use when comes to calculating VQT bandwidth
* @param {FrequencyBands[]} [hzArray=generateFreqBands()] - The array of center frequency bands
* @returns {number[]} Spectrum2 output, either DTFT or CQT
*/
function calcSpectrum2(waveform, octavesResolution = 12, cqtMode = 'cbw', cqtAlignment = 1, timeResolution = 1000, desiredTresAtFreq = 50, freqResolutionScale, freqResolutionLinearFactor, windowFunction, windowParameter, windowSkew, hzArray = generateFreqBands(), sampleRate = 44100) {
return hzArray.map(x => {
const coeff = 2 * Math.cos(2*Math.PI*x.ctr/sampleRate);
if (cqtMode === 'cbw') {
return calcGoertzel(waveform, coeff);
}
else {
const vqtBandwidth = 1/(2*timeResolution/1000),
slo = fscale(desiredTresAtFreq - vqtBandwidth, freqResolutionScale, freqResolutionLinearFactor),
shi = fscale(desiredTresAtFreq + vqtBandwidth, freqResolutionScale, freqResolutionLinearFactor),
lowerBound = invFscale(map(map(fscale(x.ctr, freqResolutionScale, freqResolutionLinearFactor), slo, shi, 0, 1)-0.5, 0, 1, slo, shi), freqResolutionScale, freqResolutionLinearFactor),
higherBound = invFscale(map(map(fscale(x.ctr, freqResolutionScale, freqResolutionLinearFactor), slo, shi, 0, 1)+0.5, 0, 1, slo, shi), freqResolutionScale, freqResolutionLinearFactor);
let f1 = 0,
f2 = 0,
sine,
tlen = cqtMode === 'vqt' ? 1/(higherBound - lowerBound) : 2 / (x.ctr / octavesResolution + (sampleRate/waveform.length) * 2 * (cqtMode === 'pcqt')),
scaledTlen = Math.min(tlen*sampleRate/waveform.length, 1),
//lowerIdx = Math.ceil(map(-scaledTlen, -1, 1, 0, waveform.length-1)),
//higherIdx = Math.floor(map(scaledTlen, -1, 1, 0, waveform.length-1)),
offset = Math.trunc((waveform.length-scaledTlen*waveform.length)*(0.5+cqtAlignment/2)),
lowerIdx = offset,
higherIdx = Math.trunc(scaledTlen*waveform.length)+offset-1,
norm = 0;
for (let i = lowerIdx; i <= higherIdx; i++) {
let posX = map(i, lowerIdx, higherIdx, -1, 1);//(i * 2 / (waveform.length-1) - 1) / scaledTlen;
let w = applyWindow(posX, windowFunction, windowParameter, true, windowSkew);
norm += w;
// Goertzel transform
sine = waveform[i]*w + coeff * f1 - f2;
f2 = f1;
f1 = sine;
}
return Math.sqrt(f1 ** 2 + f2 ** 2 - coeff * f1 * f2) / norm;
}
});
}
/**
* Brown-Puckette constant-Q transform algorithm, frequency domain filterbank to turn FFT into CQT
*
* @param {ComplexFFT[]} complexFFTCoeffs - The complex FFT coefficients to process
* @param {number} [octaveSpacing=12] - Fractional octave, higher values provides frequency higher resolution
* @param {boolean} [constantBandwidth=false] - If set to true, the algorithm will be constant-bandwidth instead
* @param {FrequencyBands[]} [hzArray=generateFreqBands()] - Array of center frequency bands
* @returns {number[]} Brown-Puckette's CQT output
*/
function calcCQT(complexFFTCoeffs, octaveSpacing = 12, cqtMode = 'cbw', bandwidth = 4, timeResolution = 1000, desiredTresAtFreq = 50, freqResolutionScale, freqResolutionLinearFactor, windowFunction, windowParameter, windowSkew, hzArray = generateFreqBands(), bufferSize = complexFFTCoeffs.length, sampleRate = 44100) {
return hzArray.map((band) => {
const freq = band.ctr;
let result = 0,
l1 = 0,
l2 = 0,
r1 = 0,
r2 = 0,
a1 = 0,
a2 = 0,
b1 = 0,
b2 = 0,
real, imag;
const vqtBandwidth = 1/(2*timeResolution/1000),
slo = fscale(desiredTresAtFreq - vqtBandwidth, freqResolutionScale, freqResolutionLinearFactor),
shi = fscale(desiredTresAtFreq + vqtBandwidth, freqResolutionScale, freqResolutionLinearFactor),
lowerBound = invFscale(map(map(fscale(freq, freqResolutionScale, freqResolutionLinearFactor), slo, shi, 0, 1)-0.5, 0, 1, slo, shi), freqResolutionScale, freqResolutionLinearFactor),
higherBound = invFscale(map(map(fscale(freq, freqResolutionScale, freqResolutionLinearFactor), slo, shi, 0, 1)+0.5, 0, 1, slo, shi), freqResolutionScale, freqResolutionLinearFactor);
let tlen = Math.min(cqtMode === 'cbw' ? Infinity : (cqtMode === 'vqt' ? 1 / (higherBound - lowerBound) : 2/(freq/octaveSpacing + (sampleRate/bufferSize) * 2 * (cqtMode === 'pcqt'))), bufferSize / sampleRate);
let flen = Math.min(bandwidth * bufferSize / (tlen * sampleRate), bufferSize);
let center = freq * bufferSize / sampleRate;
let start = Math.ceil(center - flen/2);
let end = Math.floor(center + flen/2);
/*let len = end - start + 1;
let coeffs = new Array(len).fill(0);
for (let i = start; i <= end; i++) {
let sign = (i & 1) ? (-1) : (1);
let x = 2 * (i - center) / flen;
let w = applyWindow(x, windowFunction, windowParameter, true, windowSkew);
coeffs[i - start] = w*sign;
}
for (let i = 0; i < coeffs.length; i++) {
let u = coeffs[i];
let x = start + i;
let y = bufferSize - x;
a1 += u * complexFFTCoeffs[(x % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].re;
a2 += u * complexFFTCoeffs[(x % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].im;
b1 += u * complexFFTCoeffs[(y % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].re;
b2 += u * complexFFTCoeffs[(y % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].im;
}*/
for (let i = start; i <= end; i++) {
let sign = (i & 1) ? (-1) : (1);
let x = 2 * (i - center) / flen;
let w = applyWindow(x, windowFunction, windowParameter, true, windowSkew);
let u = w*sign;
let y = bufferSize - i;
a1 += u * complexFFTCoeffs[(i % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].re;
a2 += u * complexFFTCoeffs[(i % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].im;
b1 += u * complexFFTCoeffs[(y % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].re;
b2 += u * complexFFTCoeffs[(y % complexFFTCoeffs.length + complexFFTCoeffs.length) % complexFFTCoeffs.length].im;
}
l1 = a1 + b1;
l2 = a2 - b2;
r1 = b2 + a2;
r2 = b1 - a1;
real = Math.hypot(l1, l2);
imag = Math.hypot(r1, r2);
return Math.hypot(real, imag)/8;
});
}
function calcAutocorrelation(waveform) {
return waveform.map((_, lag, arr) => {
let sum = 0;
for (let i = 0; i < arr.length-lag; i++) {
let lagged = i+lag;
let x = waveform[i];
let y = waveform[lagged];
let product = x * y;
sum += product;
}
return sum / arr.length;
});
}
/**
* FFT and convolution (JavaScript)
*
* Copyright (c) 2017 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*/
/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This is a wrapper function.
*/
function transform(real, imag) {
const n = real.length;
if (n != imag.length)
throw "Mismatched lengths";
if (n <= 0)
return;
else if ((2 ** Math.trunc(Math.log2(n))) === n) // Is power of 2
transformRadix2(real, imag);
else // More complicated algorithm for arbitrary sizes
transformBluestein(real, imag);
}
/*
* Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse.
*/
function inverseTransform(real, imag) {
transform(imag, real);
}
/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm.
*/
function transformRadix2(real, imag) {
// Length variables
const n = real.length;
if (n != imag.length)
throw "Mismatched lengths";
if (n <= 1) // Trivial transform
return;
const logN = Math.log2(n);
if ((2 ** Math.trunc(logN)) !== n)
throw "Length is not a power of 2";
// Trigonometric tables
let cosTable = new Array(n / 2);
let sinTable = new Array(n / 2);
for (let i = 0; i < n / 2; i++) {
cosTable[i] = Math.cos(2 * Math.PI * i / n);
sinTable[i] = Math.sin(2 * Math.PI * i / n);
}
// Bit-reversed addressing permutation
for (let i = 0; i < n; i++) {
let j = reverseBits(i, logN);
if (j > i) {
let temp = real[i];
real[i] = real[j];
real[j] = temp;
temp = imag[i];
imag[i] = imag[j];
imag[j] = temp;
}
}
// Cooley-Tukey decimation-in-time radix-2 FFT
for (let size = 2; size <= n; size *= 2) {
let halfsize = size / 2;
let tablestep = n / size;
for (let i = 0; i < n; i += size) {
for (let j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
const l = j + halfsize;
const tpre = real[l] * cosTable[k] + imag[l] * sinTable[k];
const tpim = -real[l] * sinTable[k] + imag[l] * cosTable[k];
real[l] = real[j] - tpre;
imag[l] = imag[j] - tpim;
real[j] += tpre;
imag[j] += tpim;
}
}
}
// Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'.
function reverseBits(x, bits) {
let y = 0;
for (let i = 0; i < bits; i++) {
y = (y << 1) | (x & 1);
x >>>= 1;
}
return y;
}
}
/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function.
* Uses Bluestein's chirp z-transform algorithm.
*/
function transformBluestein(real, imag) {
// Find a power-of-2 convolution length m such that m >= n * 2 + 1
const n = real.length;
if (n != imag.length)
throw "Mismatched lengths";
const m = 2 ** Math.trunc(Math.log2(n*2)+1);
// Trignometric tables
let cosTable = new Array(n);
let sinTable = new Array(n);
for (let i = 0; i < n; i++) {
let j = i * i % (n * 2); // This is more accurate than j = i * i
cosTable[i] = Math.cos(Math.PI * j / n);
sinTable[i] = Math.sin(Math.PI * j / n);
}
// Temporary vectors and preprocessing
let areal = newArrayOfZeros(m);
let aimag = newArrayOfZeros(m);
for (let i = 0; i < n; i++) {
areal[i] = real[i] * cosTable[i] + imag[i] * sinTable[i];
aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i];
}
let breal = newArrayOfZeros(m);
let bimag = newArrayOfZeros(m);
breal[0] = cosTable[0];
bimag[0] = sinTable[0];
for (let i = 1; i < n; i++) {
breal[i] = breal[m - i] = cosTable[i];
bimag[i] = bimag[m - i] = sinTable[i];
}
// Convolution
let creal = new Array(m);
let cimag = new Array(m);
convolveComplex(areal, aimag, breal, bimag, creal, cimag);
// Postprocessing
for (let i = 0; i < n; i++) {
real[i] = creal[i] * cosTable[i] + cimag[i] * sinTable[i];
imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i];
}
}
/*
* Computes the circular convolution of the given real vectors. Each vector's length must be the same.
*/
function convolveReal(x, y, out) {
const n = x.length;
if (n != y.length || n != out.length)
throw "Mismatched lengths";
convolveComplex(x, newArrayOfZeros(n), y, newArrayOfZeros(n), out, newArrayOfZeros(n));
}
/*
* Computes the circular convolution of the given complex vectors. Each vector's length must be the same.
*/
function convolveComplex(xreal, ximag, yreal, yimag, outreal, outimag) {
const n = xreal.length;
if (n != ximag.length || n != yreal.length || n != yimag.length
|| n != outreal.length || n != outimag.length)
throw "Mismatched lengths";
xreal = xreal.slice();
ximag = ximag.slice();
yreal = yreal.slice();
yimag = yimag.slice();
transform(xreal, ximag);
transform(yreal, yimag);
for (let i = 0; i < n; i++) {
const temp = xreal[i] * yreal[i] - ximag[i] * yimag[i];
ximag[i] = ximag[i] * yreal[i] + xreal[i] * yimag[i];
xreal[i] = temp;
}
inverseTransform(xreal, ximag);
for (let i = 0; i < n; i++) { // Scaling (because this FFT implementation omits it)
outreal[i] = xreal[i] / n;
outimag[i] = ximag[i] / n;
}
}
function newArrayOfZeros(n) {
let result = new Array(n).fill(0);
return result;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment