Skip to main content

Role of modified nucleosides of yeast tRNAPhe in ribosomal binding

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNAPhe anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASLPhe). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNAPhe anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2′O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNAPhe. Thus, effective ribosome binding of tRNAPhe is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grosjean, H., and Benne, R. (1998) Modification and Editing of RNA. American Society for Microbiology, Washington, DC.

    Google Scholar 

  2. Rozenski, J., Crain, P. F., and McCloskey, J. A. (1999) The RNA Modification Database: 1999 update. Nucleic Acids Res. 27, 196.

    Article  PubMed  CAS  Google Scholar 

  3. Ashraf, S. S., Sochacka, E., Cain, R., Guenther, R., Malkiewicz, A., and Agris, P. F. (1999) Single atom modification (O→S) of tRNA confers ribosome binding. RNA 5, 188.

    Article  PubMed  CAS  Google Scholar 

  4. Harrington, K. M., Nazarenko, I. A., Dix, D. B., Thompson, R. C., and Uhlenbeck, O. C. (1993) In vitro analysis of translational rate and accuracy with an unmodified tRNA. Biochemistry 32, 7617.

    Article  PubMed  CAS  Google Scholar 

  5. Moazed, D. and Noller, H. F. (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47, 985.

    Article  PubMed  CAS  Google Scholar 

  6. Ashraf, S. S., Guenther, R., and Agris, P. F. (1999) Orientation of the tRNA in the ribosomal P-site: quantitative footprinting with U-33 modified, anticodon stem and loop domains. RNA 9, 1191.

    Article  Google Scholar 

  7. Noah, J. W. and Wollenzien, P. (1998) Dependence of the 16S rRNA decoding region structure on Mg2+, subunit association, and temperature. Biochemistry 37, 15442.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, C., Schmidt, P. G., Petsch, J., and Agris, P. F. (1985) Nuclear magnetic resonance signal assignments of purified [13C]methyl-enriched yeast phenylalanine transfer ribonucleic acid. Biochemistry 24, 1434.

    Article  PubMed  CAS  Google Scholar 

  9. Rose, S. J. D., Lowary, P. T., and Uhlenbeck, O. C. (1983) Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes. J. Mol. Biol. 167, 103.

    Article  PubMed  CAS  Google Scholar 

  10. Agris, P. F., Guenther, R., Sochacka, E., Newman, W., Czerwinska, G., Liu, G., Ye, W., and Malkiewicz, A. (1999) Thermodynamic contribution of nucleoside modifications to yeast tRNAPhe anticodon stem loop analogs. Acta Biochim. Polonica 46, 163.

    CAS  Google Scholar 

  11. Moazed, D. and Noller, H. F. (1989) Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57, 585.

    Article  PubMed  CAS  Google Scholar 

  12. Ashraf, S. S., Ansari, G., Guenther, R., Sochacka, E., Malkiewicz, A., and Agris, P. F. (1999) Uridine in “U-turn”: contributions to tRNA-ribosomal binding. RNA 5, 503.

    Article  PubMed  CAS  Google Scholar 

  13. Cunningham, P. R., Nurse, K., Weitzmann, C. J., Negre, D., and Ofengand, J. (1992) G1401: a key-stone nucleotide at the decoding site of Escherichia coli 30S ribosomes. Biochemistry 31, 7629.

    Article  PubMed  CAS  Google Scholar 

  14. Prince, J. B., Taylor, B. H., Thurlow, D. L., Ofengand, J., and Zimmermann, R. A. (1982) Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. Proc. Natl. Acad. Sci. USA 79, 5450.

    Article  PubMed  CAS  Google Scholar 

  15. Pixa, G., Dirheimer, G., and Keith, G. (1983) Sequence of tRNALeu CmAA from Bacillus stearothermophilus. Biochem. Biophys. Res. Commun. 112, 578.

    Article  PubMed  CAS  Google Scholar 

  16. Horie, N., Yamaizumi, Z., Kuchino, Y., Takai, K., Goldman, E., Miyazawa, T., Nishimura, S., and Yokoyama, S. (1999) Modified nucleosides in the first positions of the anticodons of tRNA(Leu)4 and tRNA(Leu)5 from Escherichia coli. Biochemistry 38, 207.

    Article  PubMed  CAS  Google Scholar 

  17. Agris, P. F., Malkiewicz, A., Kraszewski, A., Everett, K., Nawrot, B., Sochacka, E., Jankowska, J., and Guenther, R. (1995) Site-selected introduction of modified purine and pyrimidine ribonucleosides into RNA by automated phosphoramidite chemistry. Biochimie 77, 125.

    Article  PubMed  CAS  Google Scholar 

  18. Gehrke, C. W., Kuo, K. C., McCune, R. A., Gerhardt, K. O., and Agris, P. F. (1982) Quantitative enzymatic hydrolysis of tRNAs: reversed-phase high-performance liquid chromatography of tRNA nucleosides. J. Chromatogr. 230, 297.

    Article  PubMed  CAS  Google Scholar 

  19. Ericson, G., Minchew, P., and Wollenzien, P. (1995) Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30S ribosomal subunit are correlated to changes in tRNA binding. J. Mol. Biol. 250, 407.

    Article  PubMed  CAS  Google Scholar 

  20. von Ahsen, U., Green, R., Schroeder, R., and Noller, H. F. (1997) Identification of 2′-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome. RNA 3, 49.

    Google Scholar 

  21. Kierzek, R., Burkard, M. B., and Turner, D. H. (1999) Thermodynamics of single mismatches in RNA duplexes. Biochemistry 38, 14214.

    Article  PubMed  CAS  Google Scholar 

  22. Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA scondary structure. J. Mol. Biol. 288, 911.

    Article  PubMed  CAS  Google Scholar 

  23. Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N., and Noller, H. F. (1999) X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Agris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, S.S., Guenther, R.H., Ansari, G. et al. Role of modified nucleosides of yeast tRNAPhe in ribosomal binding. Cell Biochem Biophys 33, 241–252 (2000). https://doi.org/10.1385/CBB:33:3:241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:33:3:241

Index Entries