Abstract
The extracellular signal-regulated kinase (ERK) cascade is a central intracellular signaling pathway that is activated by a variety of extracellular stimuli, and thereby regulates cellular processes such as proliferation, differentiation, and oncogenic transformation. To execute these functions, the signals of those stimuli are transmitted to the cytosolic and nuclear targets in a rapid and specific manner. In the last few years it has become clear that the specificity and the rapid function of the ERK cascade is largely determined by protein-protein interactions with various signaling components and substrates. This review describes interactions of ERK with its immediate regulators, scaffold proteins, substrates, and localizing proteins, and shows their involvement in the functioning of the ERK cascade. Understanding the full scope of ERK-interactions is important for the development of new drugs for the treatment of cancer and other diseases.
Similar content being viewed by others
References
Seger, R., and Krebs, E. G. (1995) The MAPK signaling cascade. Faseb. J 9, 726–735.
Pearson, G., Robinson, F., Beers Gibson, T., et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183.
Chen, Z., Gibson, T. B., Robinson, F., et al. (2001) MAP kinases. Chem. Rev. 101, 2449–2476.
Rubinfeld, H. and Seger, R. (2004) The ERK cascade as a prototype of MAPK signaling pathways. Methods. Mol. Biol. 250, 1–28.
Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., et al. (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 64–67.
Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes. Dev. 7, 2135–2148.
Kyriakis, J. M., Banerjee, P., Nikolakaki, E., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.
Freshney, N. W., Rawlinson, L., Guesdon, F., et al. (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049.
Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.
Lee, J. C., Laydon, J. T., McDonnell, P. C., et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746.
Zhou, G., Bao, Z. Q., and Dixon, J. E. (1995) Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12665–12669.
Kyriakis, J. M., Force, T. L., Rapp, U. R., Bonventre, J. V., and Avruch, J. (1993) Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase. J. Biol. Chem. 268, 16009–16019.
Kyriakis, J. M., App, H., Zhang, X. F., Banerjee, P., Brautigan, D. L., Rapp, U. R., and Avruch, J. (1992) Raf-1 activates MAPKK. Nature 358, 417–421.
Saito, Y., Gomez, N., Campbell, D. G., Ashworth, A., Marshall, C. J., and Cohen, P. (1994) The threonine residues in MAPKK 1 phosphorylated by MAP kinase in vitro are also phosphorylated in nerve growth factor-stimulated rat phaeochromocytoma (PC12) cells. FEBS Lett. 341, 119–124.
Payne, D. M., Rossomando, A. J., Martino, P., et al. (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885–892.
Sturgill, T. W., Ray, L. B., Erikson, E., and Maller, J. L. (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334, 715–718.
Deak, M., Clifton, A. D., Lucocq, L. M., and Alessi, D. R. (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441.
Fukunaga, R. and Hunter, T. (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921–1933.
Waskiewicz, A. J., Flynn, A., Proud, C. G., and Cooper, J. A. (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920.
Marais, R., Wynne, J., and Treisman, R. (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393.
Chen, R. H., Abate, C., and Blenis, J. (1993) Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA 90, 10952–10956.
Murphy, L. O., Smith, S., Chen, R. H., Fingar, D. C., and Blenis, J. (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell. Biol. 4, 556–564.
Morton, S., Davis, R. J., McLaren, A., and Cohen, P. (2003) A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J. 22, 3876–3886.
Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., and Davis, R. J. (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72, 269–278.
Lewis, T. S., Hunt, J. B., Aveline, L. D., et al. (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell. 6, 1343–1354.
Northwood, I. C., Gonzalez, F. A., Wartmann, M., Raden, D. L., and Davis, R.J. (1991) Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. J. Biol. Chem. 266, 15266–15276.
Yung, Y., Yao, Z., Hanoch, T., and Seger, R. (2000) ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK. J. Biol. Chem. 275, 15799–15808.
Aebersold, D. M., Shaul, Y., Yung, Y., et al. (2004) ERK1c, a 42-kDa ERK with a unique mode of regulation by phosphorylation, dephosphorylation and ubiquitination. Mol. Cell Biol. 24, 10,000–10,015.
Gonzalez, F. A., Raden, D. L., Rigby, M. R., and Davis, R. J. (1992) Heterogeneous expression of four MAP kinase isoforms in human tissues. FEBS Lett. 304, 170–178.
Boulton, T. G., Nye, S. H., Robbins, D. J., et al. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675.
Boulton, T. G., and Cobb, M. H. (1991) Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell. Regul. 2, 357–371.
Boulton, T. G., Gregory, J. S., and Cobb, M. H. (1991) Purification and properties of extracellular signal-regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase. Biochemistry 30, 278–286.
Yung, Y., Yao, Z., Aebersold, D. M., Hanoch, T., and Seger, R. (2001) Altered regulation of ERK1b by MEK1 and PTP-SL and modified Elk1 phosphorylation by ERK1b are caused by abrogation of the regulatory C-terminal sequence of ERKs. J. Biol. Chem. 276, 35280–35289.
Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994) Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature 367, 704–711.
Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.
Rubinfeld, H., Hanoch, T., and Seger, R. (1999) Identification of a cytoplasmic-retention sequence in ERK2. J. Biol. Chem. 274, 30349–30352.
Tanoue, T., Adachi, M., Moriguchi, T., and Nishida, E. (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell. Biol. 2, 110–116.
Bott, C. M., Thorneycroft, S. G., and Marshall, C. J. (1994) The sevenmaker gain-of-function mutation in p42 MAP kinase leads to enhanced signalling and reduced sensitivity to dual specificity phosphatase action. FEBS Lett. 352, 201–205.
Bardwell, A. J., Abdollahi, M., and Bardwell, L. (2003) Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity. Biochem J 370, 1077–1085.
Gille, H., Sharrocks, A. D., and Shaw, P. E. (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358, 414–417.
Tanoue, T., Maeda, R., Adachi, M., and Nishida, E. (2001) Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J. 20, 466–479.
Reszka, A. A., Seger, R., Diltz, C. D., Krebs, E. G., and Fischer, E. H. (1995) Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. USA 92, 8881–8885.
Wilsbacher, J. L., Goldsmith, E. J., and Cobb, M. H. (1999) Phosphorylation of MAP kinases by MAP/ERK involves multiple regions of MAP kinases. J. Biol. Chem. 274, 16988–16994.
Lee, T., Hoofnagle, A. N., Kabuyama, Y., et al. (2004) Docking Motif Interactions in MAP Kinases Revealed by Hydrogen Exchange Mass Spectrometry. Mol. Cell 14, 43–55.
Eblen, S. T., Catling, A. D., Assanah, M. C., and Weber, M. J. (2001) Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Mol. Cell. Biol. 21, 249–259.
Robinson, F. L., Whitehurst, A. W., Raman, M., and Cobb, M. H. (2002) Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1. J. Biol. Chem. 277, 14844–14852.
Fukuda, M., Gotoh, Y., and Nishida, E. (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908.
Wolf, I., Rubinfeld, H., Yoon, S., Marmor, G., Hanoch, T., and Seger, R. (2001) Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J. Biol. Chem. 276, 24490–24497.
Adachi, M., Fukuda, M., and Nishida, E. (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J. Cell. Biol. 148, 849–856.
Bardwell, A. J., Flatauer, L. J., Matsukuma, K., Thorner, J., and Bardwell, L. (2001) A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem. 276, 10374–10386.
Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185.
Yao, Z., and Seger, a. R. (2004) The molecular Mechanism of MAPK/ERK inactivation. Current genomics, in press.
Camps, M., Nichols, A., Gillieron, C., et al. (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262–1265.
Zhou, B., Wu, L., Shen, K., Zhang, J., Lawrence, D. S., and Zhang, Z. Y. (2001) Multiple regions of MAP kinase phosphatase 3 are involved in its recognition and activation by ERK2. J. Biol. Chem. 276, 6506–6515.
Nichols, A., Camps, M., Gillieron, C., et al. (2000) Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J. Biol. Chem. 275, 24613–24621.
Zhang, J., Zhou, B., Zheng, C. F., and Zhang, Z. Y. (2003) A bipartite mechanism for ER2 recognition by its cognate regulators and substrates. J. Biol. Chem. 278, 29901–29912.
Wente, S. R. (2000) Gatekeepers of the nucleus. Science 288, 1374–1377.
Cobb, M. H., and Goldsmith, E. J. (2000) Dimerization in MAP-kinase signaling. Trends Biochem. Sci. 25, 7–9.
Matsubayashi, Y., Fukuda, M., and Nishida, E. (2001) Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J. Biol. Chem. 276, 41755–41760.
Whitehurst, A. W., Wilsbacher, J. L., You, Y., Luby-Phelps, K., Moore, M. S., and Cobb, M. H. (2002) ERK2 enters the nucleus by a carrier-independent mechanism. Proc. Natl. Acad. Sci. USA 99, 7496–7501.
Levchenko, A., Bruck, J., and Sternberg, P. W. (2000) Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97, 5818–5823.
Whitmarsh, A. J., and Davis, R. J. (1998) Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485.
Garrington, T. P., and Johnson, G. L. (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211–218.
Schaeffer, H. J., Catling, A. D., Eblen, S. T., Collier, L. S., Krauss, A., and Weber, M. J. (1998) MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281, 1668–1671.
Morrison, D. K. (2001) KSR: a MAPK scaffold of the Ras pathway? J. Cell Sci. 114, 1609–1612.
Tohgo, A., Pierce, K. L., Choy, E. W., Lefkowitz, R. J., and Luttrell, L. M. (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem. 277, 9429–9436.
Woods, A. J., Roberts, M. S., Choudhary, J., et al. (2002) Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. J. Biol. Chem. 277, 6428–6437.
Choi, K. Y., Satterberg, B., Lyons, D. M., and Elion, E. A. (1994) Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512.
Marcus, S., Polverino, A., Barr, M., and Wigler, M. (1994) Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module. Proc. Natl. Acad. Sci. USA 91, 7762–7766.
Elion, E. A. (2001) The Ste5p scaffold. J. Cell. Sci. 114, 3967–3978.
Park, S. H., Zarrinpar, A., and Lim, W. A. (2003) Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064.
Kusari, A. B., Molina, D. M., Sabbagh, W., Jr., Lau, C. S., and Bardwell, L. (2004) A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. J. Cell. Biol. 164, 267–277.
Tedford, K., Kim, S., Sa, D., Stevens, K., and Tyers, M. (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr. Biol. 7, 228–238.
Madhani, H. D., Styles, C. A., and Fink, G. R. (1997) MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673–684.
Bardwell, L., Cook, J.G., Voora, D., Baggott, D. M., Martinez, A. R., and Thorner, J. (1998) Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev. 12, 2887–2898.
Zeitlinger, J., Simon, I., Harbison, C. T., et al. (2003) Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404.
Posas, F., and Saito, H. (1997) Osmotic activation of the HOG MAPK pathway via Ste 11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705.
O’Rourke, S. M., Herskowitz, I., and O’Shea, E. K. (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet. 18, 405–412.
Schuller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., and Ruis, H. (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13, 4382–4389.
Maeda, T., Takekawa, M., and Saito, H. (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554–558.
Tatebayashi, K., Takekawa, M., and Saito, H. (2003) A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J. 22, 3624–3634.
Wunderlich, W., Fialka, I., Teis, D., et al. (2001) A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J. Cell. Biol. 152, 765–776.
Therrien, M., Chang, H. C., Solomon, N. M., Karim, F. D., Wassarman, D. A., and Rubin, G. M. (1995) KSR, a novel protein kinase required for RAS signal transduction. Cell 83, 879–888.
Sundaram, M., and Han, M. (1995) The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83, 889–901.
Kornfeld, K., Hom, D. B., and Horvitz, H. R. (1995) The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83, 903–913.
Xing, H. R., Campodonico, L., and Kolesnick, R. N. (2004) The kinase activity of kinase suppressor of Ras1 (KSR1) is independent of bound MEK. J. Biol. Chem. 279, 26,210–26,214.
Stewart, S., Sundaram, M., Zhang, Y., Lee, J., Han, M., and Guan, K. L. (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol. Cell. Biol. 19, 5523–5534.
Yu, W., Fantl, W. J., Harrowe, G., and Williams, L. T. (1998) Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr. Biol. 8, 56–64.
Denouel-Galy, A., Douville, E. M., Warne, P. H., et al. (1998) Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr. Biol. 8, 46–55.
Muller, J., Ory, S., Copeland, T., Piwnica-Worms, H., and Morrison, D. K. (2001) C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell 8, 983–993.
Fantz, D. A., Jacobs, D., Glossip, D., and Kornfeld, K. (2001) Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J. Biol. Chem. 276, 27256–27265.
Roy, F., Laberge, G., Douziech, M., Ferland-McCollough, D., and Therrien, M. (2002) KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev. 16, 427–438.
Morrison, D. K., and Davis, R. J. (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell. Dev. Biol. 19, 91–118.
Sugimoto, T., Stewart, S., Han, M., and Guan, K. L. (1998) The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation. EMBO J. 17, 1717–1727.
Ferguson, S. S., Downey, W. E., 3rd, Colapietro, A. M., Barak, L. S., Menard, L., and Caron, M. G. (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366.
Pierce, K. L., Luttrell, L. M., and Lefkowitz, R. J. (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20, 1532–1539.
Naor, Z., Benard, O., and Seger, R. (2000) Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol. Metab. 11, 91–99.
Daaka, Y., Luttrell, L. M., Ahn, S., et al. (1998) Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688.
Luttrell, L. M., Roudabush, F. L., Choy, E. W., et al. (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl. Acad. Sci. USA 98, 2449–2454.
Miller, W. E., Maudsley, S., Ahn, S., Khan, K. D., Luttrell, L. M., and Lefkowitz, R. J. (2000) beta-arrestinl interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J. Biol. Chem. 275, 11312–11319.
DeFea, K. A., Vaughn, Z. D., O’Bryan, E. M., Nishijima, D., Dery, O., and Bunnett, N. W. (2000) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta — arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci. USA 97, 11086–11091.
Tohgo, A., Choy, E. W., Gesty-Palmer, D., et al. (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem. 278, 6258–6267.
Schaller, M. D., Otey, C. A., Hildebrand, J. D., and Parsons, J. T. (1995) Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J. Cell. Biol. 130, 1181–1187.
Hagel, M., George, E. L., Kim, A., et al. (2002) The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol. 22, 901–915.
Ishibe, S., Joly, D., Zhu, X., and Cantley, L. G. (2003) Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol. Cell. 12, 1275–1285.
Chen, R. H., Sarnecki, C., and Blenis, J. (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915–927.
Lewis, T. S., Shapiro, P. S., and Ahn, N. G. (1998) Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139.
Xing, J., Ginty, D. D., and Greenberg, M. E. (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963.
Shimamura, A., Ballif, B. A., Richards, S. A., and Blenis, J. (2000) Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr. Biol. 10, 127–135.
Sassone-Corsi, P., Mizzen, C. A., Cheung, P., et al. (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891.
Roux, P. P., Richards, S. A., and Blenis, J. (2003) Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol. Cell. Biol. 23, 4796–4804.
Smith, J. A., Poteet-Smith, C. E., Malarkey, K., and Sturgill, T. W. (1999) Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J. Biol. Chem. 274, 2893–2898.
Smith, J. A., Poteet-Smith, C. E., Lannigan, D. A., Freed, T. A., Zoltoski, A. J., and Sturgill, T. W. (2000) Creation of a stress-activated p90 ribosomal S6 kinase. The carboxyl-terminal tail of the MAPK-activated protein kinases dictates the signal transduction pathway in which they function. J. Biol. Chem. 275, 31588–31593.
Grevin, D., Ung, S., Denhez, F., et al. (1996) Structure and organization of the mouse elk1 gene. Gene 174, 185–188.
Griffiths, M. R., Black, E. J., Culbert, A. A., et al. (1998) Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochem. J. 335, 19–26.
Gille, H., Kortenjann, M., Thomae, O., et al. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962.
Price, M. A., Cruzalegui, F. H., and Treisman, R. (1996) The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. EMBO J. 15, 6552–6563.
Cruzalegui, F. H., Cano, E., and Treisman, R. (1999) ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18, 7948–7957.
Rao, V. N., and Reddy, E. S. (1994) elk-1 proteins interact with MAP kinases. Oncogene 9, 1855–1860.
Jacobs, D., Glossip, D., Xing, H., Muslin, A. J., and Kornfeld, K. (1999) Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163–175.
Conti, M., Richter, W., Mehats, C., Livera, G., Park, J. Y., and Jin, C. (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem. 278, 5493–5496.
MacKenzie, S. J., Baillie, G. S., McPhee, I., Bolger, G. B., and Houslay, M. D. (2000) ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions. J. Biol. Chem. 275, 16609–16617.
Houslay, M. D., and Kolch, W. (2000) Cell-type specific integration of crosstalk between extracellular signal-regulated kinase and cAMP signaling. Mol. Pharmacol. 58, 659–668.
Baillie, G., MacKenzie, S. J., and Houslay, M. D. (2001) Phorbol 12-myristate 13-acetate triggers the protein kinase A-mediated phosphorylation and activation of the PDE4D5 cAMP phosphodiesterase in human aortic smooth muscle cells through a route involving extracellular signal regulated kinase (ERK). Mol. Pharmacol. 60, 1100–1111.
Ramos, J. W., Kojima, T. K., Hughes, P. E., Fenczik, C. A., and Ginsberg, M. H. (1998) The death effector domain of PEA-15 is involved in its regulation of integrin activation. J. Biol. Chem. 273, 33897–33900.
Ramos, J. W., and Ginsberg, M. (2002) Expression cloning strategies for the identification of adhesion molecules. Methods Cell Biol. 69, 209–221.
Formstecher, E., Ramos, J. W., Fauquet, M., et al. (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell. 1, 239–250.
Hill, J. M., Vaidyanathan, H., Ramos, J. W., Ginsberg, M. H., and Werner, M. H. (2002) Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain. EMBO J. 21, 6494–6504.
Whitehurst, A. W., Robinson, F. L., Moore, M. S., and Cobb, M. H. (2004) The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions. J. Biol. Chem. 279, 12840–12847.
Stossel, T. P. (1993) On the crawling of animal cells. Science 260, 1086–1094.
Reszka, A. A., Bulinski, J. C., Krebs, E. G., and Fischer, E. H. (1997) Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol. Biol. Cell. 8, 1219–1232.
Leinweber, B. D., Leavis, P. C., Grabarek, Z., Wang, C. L., and Morgan, K. G. (1999) Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins. Biochem. J. 344 Pt 1, 117–123.
Michel, J. J., and Scott, J. D. (2002) AKAP mediated signal transduction. Annu. Rev. Pharmacol. Toxicol. 42, 235–257.
Pulido, R., Zuniga, A., and Ullrich, A. (1998) PTPSL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 17, 7337–7350.
Pettiford, S. M., and Herbst, R. (2000) The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP. Oncogene 19, 858–869.
Muda, M., Theodosiou, A., Gillieron, C., et al. (1998) The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity. J. Biol. Chem. 273, 9323–9329.
Zhou, B., and Zhang, Z. Y. (1999) Mechanism of mitogen-activated protein kinase phosphatase-3 activation by ERK2. J. Biol. Chem. 274, 35526–35534.
Tanoue, T., Yamamoto, T., and Nishida, E. (2002) Modular structure of a docking surface on MAPK phosphatases. J. Biol. Chem. 277, 22942–22949.
Karandikar, M., Xu, S., and Cobb, M. H. (2000) MEKK1 binds raf-1 and the ERK2 cascade components. J. Biol. Chem. 275, 40120–40127.
Yeung, K., Janosch, P., McFerran, B., et al. (2000) Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol. Cell. Biol 20, 3079–3085.
Vomastek, T., Schaeffer, H. J., Tarcsafalvi, A., Smolkin, M. E., Bissonette, E. A., and Weber, M. J. (2004) Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. Proc. Natl. Acad. Sci. USA
Garcia, J., Ye, Y., Arranz, V., Letourneux, C., Pezeron, G., and Porteu, F. (2002) IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation. EMBO J. 21, 5151–5163.
Pircher, T. J., Petersen, H., Gustafsson, J. A., and Haldosen, L. A. (1999) Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a. Mol. Endocrinol. 13, 555–565.
Roy, A. L. (2001) Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. Gene 274, 1–13.
Kim, D. W., Cheriyath, V., Roy, A. L., and Cochran, B. H. (1998) TFII-I enhances activation of the c-fos promoter through interactions with upstream elements. Mol. Cell. Biol. 18, 3310–3320.
Zhang, S., Fukushi, M., Hashimoto, S., et al. (2002) A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling. Biochem. Biophys. Res. Commun. 297, 17–23.
Xu, R., Seger, R., and Pecht, I. (1999) Cutting edge: extracellular signal-regulated kinase activates syk: a new potential feedback regulation of Fc epsilon receptor signaling. J. Immunol. 163, 1110–1114.
Shapiro, P. S., Whalen, A. M., Tolwinski, N. S., et al. (1999) Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol. Cell. Biol. 19, 3551–3560.
Roberts, M. S., Woods, A. J., Shaw, P. E., and Norman, J. C. (2003) ERK1 associates with alpha/beta 3 integrin and regulates cell spreading on vitronectin. J. Biol. Chem. 278, 1975–1985.
Purcell, N. H., Darwis, D., Bueno, O. F., Muller, J. M., Schule, R., and Molkentin, J. D. (2004) Extracellular Signal-Regulated Kinase 2 Interacts with and Is Negatively Regulated by the LIM-Only Protein FHL2 in Cardiomyocytes. Mol. Cell. Biol. 24, 1081–1095.
Ishihara, K., Tsutsumi, K., Kawane, S., Nakajima, M., and Kasaoka, T. (2003) The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett. 550, 107–113.
Roy, M., Li, Z., and Sacks, D. B. (2004) IQGAP1 binds ERK2 and modulates its activity. J. Biol. Chem. 279, 17329–17337.
David, M., Petricoin, E., 3rd, Benjamin, C., Pine, R., Weber, M. J., and Larner, A. C. (1995) Requirement for MAP kinase (ERK2) activity in interferon alpha-and interferon beta-stimulated gene expression through STAT proteins. Science 269, 1721–1723.
Zhang, H., Shi, X., Hampong, M., Blanis, L., and Pelech, S. (2001) Stress-induced inhibition of ERK1 and ERK2 by direct interaction with p38 MAP kinase. J. Biol. Chem. 276, 6905–6908.
Volente, C., Angelastro, J. M. and Greene, L. A. (1993) Association of protein kinases ERK1 and ERK2 with p75 nerve growth factor receptors. J. Biol. Chem. 268, 21,410–21,415.
Zhou, X., Richon, V., Wang, A., Yang, X., Rifkind, R., and Marks, P. (2000) Histone deacetylase 4 associates with extracellular signal-regulated by oncogenic Ras. Proc. Natl. Acad. Sci. USA 97, 14,329–14,333.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chuderland, D., Seger, R. Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol 29, 57–74 (2005). https://doi.org/10.1385/MB:29:1:57
Issue Date:
DOI: https://doi.org/10.1385/MB:29:1:57