Abstract
The generation of new drugs has long involved the screening of hundreds of thousands of components with well defined in vitro tests, seeking compounds to mimic as closely as possible the desired in vivo activity of the new drug. New library methodologies offer many alternative routes that are at least as powerful as traditional approaches by combining the generation of billions of components with a fast screening or selection procedure to identify the most interesting lead candidates. One of the most widely used library methodologies is based on the use of filamentous phage (1), a virus that lives on Escherichia coli. Phage display has proven to be a powerful technique for the interrogation of libraries containing millions or even billions of different peptides or proteins. One of the most successful applications of phage display has been the isolation of monoclonal antibodies using large phage antibody libraries (2,3). This chapter reviews the progress made in this rapidly developing field and discusses a broad range of applications, including the use of large phage Ab libraries to discover novel therapeutic targets and methods for selection of biologically active ligands. Finally, it addresses the potential of combining phage display with complementary methods to increase the scope and range of applications of this technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.
Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibody by phage display technology. Ann. Rev. Immunol. 12, 433–455.
Hoogenboom, H. R. and Chames, P. (2000) Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371–378.
Abelson, J. N. and Simon, M. (eds). (1996) Combinatorial Chemistry, vol. 267, in Methods in Enzymology. Academic, San Diego.
Kay, B., Winter, L., and McCafferty, J. (eds.) (1996) Phage Display ofPeptides and Proteins, Academic Press, San Diego.
McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.
Zacher, A. N., Stock, C. A., Golden, J. W., and Smith, G. P. (1980) New filamentous phage cloning vector: fd-tet. Gene 9, 127–140.
Skerra, A. and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.
Better, M., Chang, C. P., Robinson, R. R., and Horwitz, A. H. (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041–1043.
Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.
Garrard, L. J., Yang, M., O’Connell, M. P., Kelley, R. F., and Henner, D. J. (1991) Fab assembly and enrichment in a monovalent phage display system. Biotechnology 9, 1373–1377.
Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.
Bass, S., Greene, R., and Wells, J. A. (1990) Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins 8, 309–314.
Barbas, C., Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.
Breitling, S. D., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening. Gene 104, 147–153.
Thompson, J., Pope, T., Tung, J. S., Chan, C., Hollis, G., Mark, G., and Johnson, K. S. (1996) Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity. J. Mol. Biol. 256, 77–88.
Krebber, A., Burmester, J., and Pluckthun, A. (1996) Inclusion of an upstream transcriptional terminator in phage display vectors abolishes background expres sion of toxic fusions with coat protein g3p. Gene 178, 71–74.
Rakonjac, J., Jovanovic, G., and Model, P. (1997) Filamentous phage infection-mediated gene expression: construction and propagation of the gIII deletion mutant helper phage R408d3. Gene 198, 99–103.
Lutz, R. and Bujard, H. (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210.
Griffiths, A. D., Malmqvist, M., Marks, J. D., Bye, J. M., Embleton, M. J., McCafferty, J., et al. (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734.
Duenas, M. and Borrebaeck, C. A. (1995) Novel helper phage design: intergenic region affects the assembly of bacteriophages and the size of antibody libraries. FEMS Microbiol. Lett. 125, 317–321.
Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., and Winter, G. (1991) By-passing immunization: human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.
Chang, C. N., Landolfi, N. F., and Queen, C. (1991) Expression of antibody Fab domains on bacteriophage surfaces. J. Immunology 147, 3610–3614.
Orum, H., Andersen, P. S., Oster, A., Johansen, L. K., Riise, E., Bjornvad, M., Svendsen, I., and Engberg, J. (1993) Efficient method for constructing comprehensive murine Fab antibody libraries displayed on phage. Nucleic Acids Res. 21, 4491–4498.
Brinkmann, U., Chowdhury, P. S., Roscoe, D. M., and Pastan, I. (1995) Phage display of disulfide-stabilized Fv fragments. J. Immunol. Methods 182, 41–50.
Holliger, P., Prospero, T., and Winter, G. (1993) “Diabodies"e;: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448.
McGuinness, B. T., Walter, G., FitzGerald, K., Schuler, P., Mahoney, W., Duncan, A. R., and Hoogenboom, H. R. (1996) Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nature Biotechnol. 14, 1149–1154.
Burton, D. R., Barbas, C. F., Persson, M. A. A., Koenig, S., Chanock, R. M., and Lerner, R. A. (1991) A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic individuals. Proc. Natl. Acad. Sci. USA 88, 10,134–10,137.
Chester, K. A., Begent, R. H., Robson, L., Keep, P., Pedley, R. B., Boden, J. A., et al. (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343, 455–456.
Kettleborough, C. A., Ansell, K. H., Allen, R. W., Rosell-Vives, E., Gussow, D. H., and Bendig, M. M. (1994) Isolation of tumor cell-specific single-chain Fv from immunized mice using phage-antibody libraries and the re-construction of whole antibodies from these antibody fragments. Eur. J. Immunol. 24, 952–958.
Barbas, C. F., Collet, T. A., Amberg, W., Roben, P., Binley, J. M., Hoekstra, D., et al. (1993) Molecular profile of an antibody response to HIV-1 as probed by combinatorial libraries. J. Mol. Biol. 230, 812–823.
Cai, X. H. and Garen, A. (1995) Anti-melanoma antibodies from melanoma patients immunised with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92, 6537–6541.
Davies, E. L., Smith, J. S., Birkett, C. R., Manser, J. M., Anderson, D. D., and Young, J. R. (1995) Selection of specific phage-display antibodies using libraries derived from chicken immunoglobulin genes. J. Immunol. Methods 186, 125–135.
Yamanaka, H. I., Inoue, T., and Ikeda, T. O. (1996) Chicken monoclonal antibody isolated by a phage display system. J. Immunol. 157, 1156–1162.
Lang, I. M., Barbas, C. F., and Schleef, R. R. (1996) Recombinant rabbit Fab with binding activity to type-1 plasminogen activator inhibitor derived from a phage-display library against human alpha-granules. Gene 172, 295–298.
Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R., and Muyldermans, S. (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521–526.
de Wildt, R. M., Finnern, R., Ouwehand, W. H., Griffiths, A. D., van Venrooij, W. J., and Hoet, R. M. (1996) Characterization of human variable domain antibody fragments against the U1 RNA-associated A protein, selected from a synthetic and patient-derived combinatorial V gene library. Eur. J. Immunol. 26, 629–639.
Finnern, R., Pedrollo, E., Fisch, I., Wieslander, J., Marks, J. D., Lockwood, C. M., and Ouwehand, W. H. (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin. Exp. Immunol. 107, 269–281.
Graus, Y. F., de Baets, M. H., Parren, P. W., Berrih-Aknin, S., Wokke, J., van Breda Vriesman, P. J., and Burton, D. R. (1997) Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J. Immunol. 158, 1919–1929.
Barbas, C. F. and Burton, D. R. (1996) Selection and evolution of high-affinity human antiviral antibodies. Trends Biotechnol. 14, 230–234.
Pereira, S., van Belle, P., Elder, D., Maruyama, H., Jacob, L., Sivanandham, M., Wallack, M., Siegel, D., and Herlyn, D. (1997) Combinatorial antibodies against human malignant melanoma. Hybridoma 16, 11–16.
Clark, M. A., Hawkins, N. J., Papaioannou, A., Fiddes, R. J., and Ward, R. L. (1997) Isolation of human anti-c-erbB-2 Fabs from a lymph node-derived phage display library. Clin. Exp. Immunol. 109, 166–174.
Duenas, M., Chin, L. T., Malmborg, A. C., Casalvilla, R., Ohlin, M., and Borrebaeck, C. A. (1996) In vitro immunization of naive human B cells yields high affinity immu-noglobulin G antibodies as illustrated by phage display. Immunology 89, 1–7.
Moreno de Alboran, I., Martinez-Alonso, C., Barbas, C. F., Burton, D. R., and Ditzel, H. J. (1995) Human monoclonal Fab fragments specific for viral antigens from combinatorial IgA libraries. Immunotechnology 1, 21–28.
Hoogenboom, H. R. (1997) Designing and optimizing library selection strategies for generating high-affinity antibodies. Trends Biotechnol. 15, 62–70.
de Haard, H. J., van Neer, N., Reurs, A., Hufton, S. E., Roovers, R. C., Henderikx, P., et al. (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18,218–18,230.
Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., et al. (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnol. 14, 309–314.
Gram, H., Marconi, L., Barbas, C. F., Collet, T. A., Lerner, R. A., and Kang, A. S. (992) In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 89, 3576–3580.
Marks, J. D., Tristem, M., Karpas, A., and Winter, G. (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21, 985–991.
Klein, U., Kuppers, R., and Rajewsky, K. (1997) Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 89, 1288–1298.
Perelson, A. S. and Oster, G. F. (1979) Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81, 645–670.
Sheets, M. D., Amersdorfer, P., Finnern, R., Sargent, P., Lindquist, E., Schier, R., et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.
Hoogenboom, H. R. and Winter, G. (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388.
Barbas, C. F., Bain, J. D., Hoekstra, D. M., and Lerner, R. (1992) Semisynthetic combinatorial libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461.
Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M., Smith-Gill, S. J., Air, G., et al. (1989) Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883.
Nissim, A., Hoogenboom, H. R., Tomlinson, I. M., Flynn, G., Midgley, C., Lane, D., and Winter, G. (1994) Antibody fragments from a’ single pot’ phage display library as immunochemical reagents. EMBO J. 13, 692–698.
Garrard, L. J. and Henner, D. J. (1993) Selection of an anti-IGF-1 Fab from a Fab phage library created by mutagenesis of multiple CDR loops. Gene 128, 103–109.
Soderlind, E., Vergeles, M., and Borrebaeck, C. A. K. (1995) Domain libraries: synthetic diversity for de novo design of antibody V regions. Gene 160, 269–272.
de Kruif, J., Terstappen, L., Boel, E., and Logtenberg, T. (1995) Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. USA 92, 3938–3942.
Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., et al. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.
Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., et al. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86.
Virnekas, B., Ge, L., Pluckthun, A., Schneider, K. C., Wellnhofer, G., and Moroney, S. E. (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 22, 5600–5607.
Akerstrom, B., Nilson, B. H., Hoogenboom, H. R., and Bjorck, L. (1994) On the interaction between single-chain Fv antibodies and bacterial immunoglobulin-binding proteins. J. Immunol. Methods 177, 151–163.
Pini, A., Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol. Chem. 273, 21,769–21,776.
Tomlinson, I. M., Walter, G., Jones, P. T., Dear, P. H., Sonnhammer, E. L. L., and Winter, G. (1996) The imprint of somatic hypermutation on the repertoire of human germline V genes. J. Mol. Biol. 256, 813–817.
Sblattero, D. and Bradbury, A. (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nature Biotechnol. 18, 75–80.
Pluckthun, A. and Pack, P. (1997) New protein engineering approaches to multi-valent and bispecific antibody fragments. Immunotechnology 3, 83–105.
Hoogenboom, H. R. (1997) Mix and match: building manifold binding sites. Nature Biotechnol. 15, 125–126.
Low, N. M., Holliger, P. H., and Winter, G. (1996) Mimicking somatic hypermuta tion: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260, 359–368.
Irving, R. A., Kortt, A. A., and Hudson, P. J. (1996) Affinity maturation of recom-binant antibodies using E. coli mutator cells. Immunotechnology 2, 127–143.
Hawkins, R. E., Russell, S. J., and Winter, G. (1992) Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896.
Marks, J. D., Griffiths, A. D., Malmqvist, M., Clackson, T. P., Bye, J. M., and Winter, G. (1992) By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology 10, 779–783.
Stemmer (1996) Construction and evolution of antibody-phage libraries by DNA shuffling. Nature Med. 2, 100–102.
Glaser, S. M., Yelton, D. E., and Huse, W. D. (1992) Antibody engineering by codon-based mutagenesis in a filamentous phage vector system. J. Immunol. 149, 3903–3913.
Yang, W. P., Green, K., Pinz, S. S., Briones, A. T., Burton, D. R., and Barbas, C. F. (1995) CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403.
Schier, R., Bye, J., Apell, G., McCall, A., Adams, G. P., Malmqvist, M., Weiner, L. M., and Marks, J. D. (1996) Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43.
Deng, S. J., MacKenzie, C. R., Sadowska, J., Michniewicz, J., Young, N. M., Bundle, D. R., and Narang, S. A. (1994) Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display. J. Biol. Chem. 269, 9533–9538.
Schier, R., McCall, A., Adams, G. P., Marshall, K. W., Merritt, H., Yim, M., et al. (1996) Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567.
Balint, R. F. and Larrick, J. W. (1993) Antibody engineering by parsimonious mutagenesis. Gene 137, 109–118.
Schier, R., Balint, R. F., Larrick, J. W., et al. (1996) Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene 169, 147–155.
Ignatovich, O., Tomlinson, I. M., Jones, P. T., and Winter, G. (1997) The creation of diversity in the human immunoglobulin V(lambda) repertoire. J. Mol. Biol. 268, 69–77.
Mattheakis, L. C., Bhatt, R. R., and Dower, W. J. (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026.
Hanes, J. and Pluckthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.
Nicholls, P. J., Johnson, V. G., Andrew, S. M., Hoogenboom, H. R., Raus, J. C., and Youle, R. J. (1993) Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in rabbit reticulocyte lysate. J. Biol. Chem. 268, 5302–5308.
He, M. and Taussig, M. J. (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res. 25, 5132–5134.
Roberts, R. and Szostak, J. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12,297–12,302.
Malmborg, A. C., Duenas, M., Ohlin, M., Soderlind, E., and Borrebaeck, C. A. (1996) Selection of binders from phage displayed antibody libraries using the BIAcore biosensor. J. Immunol. Methods 198, 51–57.
Bradbury, A., Persic, L., Werge, T., and Cattaneo, A. (1993) Use of living columns to select specific phage antibodies. Biotechnology 11, 1565–1569.
van Ewijk, W., de Kruif, J., Germeraad, W. T., Berendes, P., Ropke, C., Platenburg, P. P., and Logtenberg, T. (1997) Subtractive isolation of phage-displayed single-chain antibodies to thymic stromal cells by using intact thymic fragments. Proc. Natl. Acad. Sci. USA 94, 3903–3908.
Mirzabekov, T., Kontos, H., Farzan, M., Marasco, W., and Sodroski, J. (2000) Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nature Biotechnol. 18, 649–654.
Pasqualini, R. and Ruoslahti, E. (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366.
McCafferty, J., Hoogenboom, H. R., and Chiswell, D. J. (eds.) (1996) Antibody Engineering: A Practical Approach. IRL, Oxford, UK.
Roberts, B. L. (1992) Protease inhibitor display M13 phage: selection of high-affinity neutrophil elastase inhibitors. Gene 121, 9–15.
Kang, A. S., Barbas, C. F., Janda, K. D., Benkovic, S. J., and Lerner, R. A. (1991) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc. Natl. Acad. Sci. USA 88, 4363–4366.
Ward, R. L., Clark, M. A., Lees, J., and Hawkins, N. J. (1996) Retrieval of human antibodies from phage-display libraries using enzymatic cleavage. J. Immunol. Methods 189, 73–82.
Meulemans, E. V., Slobbe, R., Wasterval, P., Ramaekers, F. C. S., and van Eys, G. J. J. M. (1994) Selection of phage-displayed antibodies specific for a cytoskel-etal antigen by competitive elution with a monoclonal antibody. J. Mol. Biol. 244, 353–360.
Markland, W., Ley, A. C., Lee, S. W., and Ladner, R. C. (1996) Iterative optimi zation of high-affinity proteases inhibitors using phage display. 1. Plasmin. Biochemistry 35, 8045–8057.
Kristensen, P. and Winter, G. (1998) Proteolytic selection for protein folding using filamentous bacteriophages. Folding Design 3, 321–328.
Horn, I. R., Wittinghofer, A., de Bruine, A. P., and Hoogenboom, H. R. (1999) Selection of phage-displayed Fab antibodies on the active conformation of Ras yields a high affinity conformation-specific antibody preventing the binding of c-Raf kinase to Ras. FEBS Lett. 463, 115–120.
Chames, P., Hufton, S. E., Coulie, P. G., Uchanska-Ziegler, B., and Hoogenboom, H. R. (2000) Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc. Natl. Acad. Sci. USA 97, 7969–7974.
Duenas, M., Malmborg, A. C., Casalvilla, R., Ohlin, M., and Borrebaeck, C. A. K. (1996) Selection of phage displayed antibodies based on kinetic constants. Mol. Immunol. 33, 279–285.
Schier, R. and Marks, J. D. (1996) Efficient in vitro affinity maturation of phage antibodies using BIAcore guided selections. Hum. Antibodies Hybridomas 7, 97–105.
Andersen, P. S., Stryhn, A., Hansen, B. E., Fugger, L., Engberg, J., and Buus, S. (1996) A recombinant antibody with the antigen-specific, major histocompat-ibility complex-restricted specificity of T cells. Proc. Natl. Acad. Sci. USA 93, 1820–1824.
Mandecki, W., Chien, Y. C., and Grihalde, N. (1995) A mathematical model for biopanning (affinity selection) using peptide libraries on filamentous phage. J. Theor. Biol. 176, 523–530.
Stausbol-Gron, B., Wind, T., Kjaer, S., Kahns, L., Hansen, N. J., Kristensen, P., and Clark, B. F. (1996) A model phage display subtraction method with potential for analysis of differential gene expression. FEBS Lett. 391, 71–75.
Marks, J. D., Ouwehand, W. H., Bye, J. M., Finnern, R., Gorick, B. D., Voak, D., et al. (1993) Human antibody fragments specific for human blood group antigens from a phage display library. Biotechnology 11, 1145–1149.
Palmer, D. B., George, A. J., and Ritter, M. A. (1997) Selection of antibodies to cell surface determinants on mouse thymic epithelial cells using a phage display library. Immunology 91, 473–478.
Siegel, D. L., Chang, T. Y., Russell, S. L., and Bunya, V. Y. (1997) Isolation of cell surface-specific human monoclonal antibodies using phage display 33 and magnetically-activated cell sorting: applications in immunohematology. J. Immunol. Methods 206, 73–85.
Jespers, L. S., Roberts, A., Mahler, S. M., Winter, G., and Hoogenboom, H. R. (1994) Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology 12, 899–903.
Figini, M., Obici, L., Mezzanzanica, D., Griffiths, A., Colnaghi, M. I., Winter, G., and Canevari, S. (1998) Panning phage antibody libraries on cells: isolation of human Fab fragments against ovarian carcinoma using guided selection. Cancer Res. 58, 991–996.
Hoogenboom, H. R., Lutgerink, J. T., Pelsers, M. M., Rousch, M. J., Coote, J., van Neer, N., de Bruine, A., et al. (1999) Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur. J. Biochem. 260, 774–784.
Pelsers, M., Lutgerink, J. T., Nieuwenhoven, F. A. V., Tandon, N. N., Vusse, G., Arends, J. W., Hoogenboom, H. R., and Glatz, J. F. C. (1999) A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem. J. 337, 407–414.
de Kruif, J. and Logtenberg, T. (1996) Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic antibody phage display library. J. Biol. Chem. 271, 7630–7634.
Mutuberria, R., Hoogenboom, H. R., van der Linden, E., de Bruine, A. P., and Roovers, R. C. (1999) Model systems to study the parameters determining the success of phage antibody selections on complex antigens. J. Immunol. Methods 231, 65–81.
Pasqualini, R., Koivunen, E., and Ruoslahti, E. (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nature Biotechnol. 15, 542–546.
Ridgway, J. B., Ng, E., Kern, J. A., Lee, J., Brush, J., Goddard, A., and Carter, P. (1999) Identification of a human anti-CD55 single-chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines. Cancer Res. 59, 2718–2723.
Topping, K. P., Hough, V. C., Monson, J. R., and Greenman, J. (2000) Isolation of human colorectal tumour reactive antibodies using phage display technology. Int. J. Oncol. 16, 187–195.
Hall, B. L., Boroughs, J., and Kobrin, B. J. (1998) A novel tumor-specific human single-chain Fv selected from an active specific immunotherapy phage display library. Immunotechnology 4, 127–140.
Osbourn, J. K., Derbyshire, E. J., Vaughan, T. J., Field, A. W., and Johnson, K. S. (1998) Pathfinder selection: in situ isolation of novel antibodies. Immunotechnology 3, 293–302.
Jung, S., Honegger, A., and Pluckthun, A. (1999) Selection for improved protein stability by phage display. J. Mol. Biol. 294, 163–180.
Zaccolo, M., Griffiths, A. P., Prospero, T. D., Winter, G., and Gherardi, E. (1997) Dimerization of Fab fragments enables ready screening of phage antibodies that affect hepatocyte growth factor/scatter factor activity on target cells. Eur. J. Immunol. 27, 618–623.
Carnemolla, B., Neri, N., Castellani, P., Veirana, N., Neri, G., Pini, A., Winter, G., and Zardi, L. (1996) High-affinity human recombinant antibodies to the oncofetal angiogenesis marker fibronectin ED-B domain. Int. J. Cancer 68, 397–405.
Lah, M., Goldstraw, A., White, J. F., Dolezal, O., Malby, R., and Hudson, P. J. (1994) Phage surface presentation and secretion of antibody fragments using an adaptable phagemid vector. Hum. Antibodies Hybridomas 5, 48–56.
Lindner, P., Bauer, K., Krebber, A., Nieba, L., Kremmer, E., Krebber, C., et al. (1997) Specific detection of his-tagged proteins with recombinant anti-his tag scFv-phosphatase or scFv-phage fusions. Biotechniques 22, 140–149.
Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R., and Stüber, D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Biotechnology 6, 1321–1325.
McCafferty, J., Fitzgerald, K. J., Earnshaw, J., Chiswell, D. J., Link, J., Smith, R., and Kenten, J. (1994) Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl. Biochem. Biotechnol. 47, 157–171.
Goldberg, M. E. and Djavadi, O. L. (1993) Methods for measurement of antibody/ antigen affinity based on ELISA and RIA. Curr. Opin. Immunol. 5, 278–281.
Kazemier, B., de Haard, H., Boender, P., van Gemen, B., and Hoogenboom, H. R. (1996) Determination of active single chain antibody concentrations in crude periplasmic fractions. J. Immunol. Methods 194, 201–209.
Ohlin, M., Owman, H., Mach, M., and Borrebaeck, C. A. (1996) Light chain shuffling of a high affinity antibody results in a drift in epitope recognition. Mol. Immunol. 33, 47–56.
Casson, L. P. and Manser, T. (1995) Random mutagenesis of two complementar ity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen. J. Exp. Med. 182, 743–750.
Hudson, P. J. and Kortt, A. A. (1999) High avidity scFv multimers; diabodies and triabodies. J. Immunol. Methods 231, 177–189.
Souriau, C., Gracy, J., Chiche, L., and Weill, M. (1999) Direct selection of EGF mutants displayed on filamentous phage using cells overexpressing EGF receptor. Biol. Chem. 380, 451–458.
Persic, L., Roberts, A., Wilton, J., Cattaneo, A., Bradbury, A., and Hoogenboom, H. R. (1997) An integrated vector system for the eukaryotic expression of antibodies or their fragments after selection from phage display libraries. Gene 187, 9–18.
Persic, L., Righi, M., Roberts, A., Hoogenboom, H. R., Cattaneo, A., and Bradbury, A. (1997) Targeting vectors for intracellular immunisation. Gene 187, 1–8.
Boel, E., Verlaan, S., Poppelier, M. J., Westerdaal, N. A., van Strijp, J. A., and Logtenberg, T. (2000) Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments. J. Immunal Metohds 239 153–166.
Den, W., Sompuram, S. R., Sarantopoulos, S. C., and Sharon, J. (1999) A bidirectional phage display vector for the selection and mass transfer of polyclonal antibody libraries. J. Immunol. Methods 222, 45–57.
Gargano, N. and Cattaneo, A. (1997) Rescue of a neutralizing anti-viral antibody fragment from an intracellular polyclonal repertoire expressed in mammalian cells. FEBS Lett. 414, 537–540.
Xie, M. H., Yuan, J., Adams, C., and Gurney, A. (1997) Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identification of agonist scFv. Nature Biotechnol. 15, 768–771.
Souriau, C., Fort, P., Roux, P., Hartley, O., Lefranc, M. P., and Weill, M. (1997) A simple luciferase assay for signal transduction activity detection of epidermal growth factor displayed on phage. Nucleic Acids Res. 25, 1585–1590.
Rousch, M., Lutgerink, J. T., Coote, J., de Bruine, A., Arends, J. W., and Hoogenboom, H. R. (1998) Somatostatin displayed on filamentous phage as a receptor-specific agonist. Br. J. Pharmacol. 125, 5–16.
Szardenings, M., Tornroth, S., Mutulis, F., Muceniece, R., Keinanen, K., Kuusinen, A., and Wikberg, J. E. (1997) Phage display selection on whole cells yields a peptide specific for melanocortin receptor 1. J. Biol. Chem. 272, 27,943–27,948.
Broach, J. R. and Thorner, J. (1996) High-throughput screening for drug discovery. Nature 384, 14–16.
Larocca, D., Kassner, P. D., Witte, A., Ladner, R. C., Pierce, G. F., and Baird, A. (1999) Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J. 13, 727–734.
Poul, M. A., Becerril, B., Nielsen, U. B., Morrison, P. and Marks, J. D. (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301, 1149–1161.
Janda, K. D., Lo, C. H., Li, T., Barbas, C. F., Wirsching, P., and Lerner, R. A. (1994) Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc. Natl. Acad. Sci. USA 91, 2532–2536.
Fuchs, P., Weichel, W., Dubel, S., Breitling, F., and Little, M. (1996) Separation of E. coli expressing functional cell-wall bound antibody fragments by FACS. Immunotechnology 2, 97–102.
Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B., and Curtiss, R. (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nature Biotechnol. 15, 29–34.
Pausch, M. H. (1997) G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery. Trends Biotechnol. 15, 487–494.
Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H., and Walter, G. (1999) Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111.
Abbott, A. (1999) A post-genomics challenge: learning to read patterns of protein expression. Nature 402, 715–720.
de Wildt, R. M. E., Mundy, C. R., Gorick, B. D., and Tomlinson, I. M. (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nature Biotechnology 18, 989–994.
Nygren, P. A. and Uhlen, M. (1997) Scaffolds for engineering novel binding sites in proteins. Curr. Opin. Struct. Biol. 7, 463–469.
Tramontano, A., Bianchi, E., Venturini, S., Martin, F., Pessi, A., and Sollazzo, M. (1994) The making of the minibody: an engineered beta-protein for the display of conformationally constrained peptides. J. Mol. Recognit. 7, 9–24.
McConnell, S. J. and Hoess, R. H. (1995) Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol. 250, 460–470.
Nord, K., Nilsson, J., Nilsson, B., Uhlen, M., and Nygren, P. A. (1995) A combinatorial library of an alpha-helical bacterial receptor domain. Protein Eng. 8, 601–608.
Ku, J. and Schultz, P. G. (1995) Alternate protein frameworks for molecular recognition. Proc. Natl. Acad. Sci. USA 92, 6552–6556.
Houston, M. E., Jr., Wallace, A., Bianchi, E., Pessi, A., and Hodges, R. S. (1996) Use of a conformationally restricted secondary structural element to display peptide libraries: a two-stranded alpha-helical coiled-coil stabilized by lactam bridges. J. Mol. Biol. 262, 270–282.
Miceli, R., Myszka, D., Mao, J., Sathe, G., and Chaiken, I. (1996) The coiled coil stem loop miniprotein as a presentation scaffold. Drug Des. Discov. 13, 95–105.
Perez-Paya, E., Forood, B., Houghten, R. A., and Blondelle, S. E. (1996) Structural characterization and 5′-mononucleotide binding of polyalanine beta-sheet complexes. J. Mol. Recognit. 9, 488–493.
Choo, Y., Castellanos, A., Garcia-Hernandez, B., Sanchez-Garcia, I., and Klug, A. (1997) Promoter-specific activation of gene expression directed by bacteriophage-selected zinc fingers. J. Mol. Biol. 273, 525–532.
Vita, C., Roumestand, C., Toma, F., and Menez, A. (1995) Scorpion toxins as natural scaffolds for protein engineering. Proc. Natl. Acad. Sci. USA 92, 6404–6408.
Rottgen, P. and Collins, J. (1995) A human pancreatic secretory trypsin inhibitor presenting a hypervariable highly constrained epitope via monovalent phagemid display. Gene 164, 243–250.
Wang, C. I., Yang, Q., and Craik, C. S. (1995) Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. J. Biol. Chem. 270, 12,250–12,256.
Nuttall, S. D., Rousch, M. J., Irving, R. A., Hufton, S. E., Hoogenboom, H. R., and Hudson, P. J. (1999) Design and expression of soluble CTLA-4 variable domain as a scaffold for the display of functional polypeptides. Proteins 36, 217–227.
Hufton, S. E., van Neer, N., van den Beucken, T., Desmet, J., Sablon, E., and Hoogenboom, H. R. (2000) Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands. FEBS Lett. 475, 225–231.
Koide, A., Bailey, C. W., Huang, X., and Koide, S. (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151.
Beste, G., Schmidt, F., Stibora, T., and Skerra, A. (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad. Sci. USA 96, 1898–1903.
Abedi, M. R., Caponigro, G., and Kamb, A. (1998) Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res. 26, 623–630.
Nord, K., Gunneriusson, E., Ringdahl, J., Stahl, S., Uhlen, M., and Nygren, P. A. (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nature Biotechnol. 15, 772–777.
Mikara, Y. G., Maruyama, I. N., and Brenner, S. (1996) Surface display of proteins on bacteriophage lambda heads. J. Mol. Biol. 262, 21–30.
Proba, K., Honegger, A., and Pluckthun, A. (1997) A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J. Mol. Biol. 265, 161–72.
Winter, G. (1989) Antibody engineering. Phil. Trans. R. Soc. Lond. B 324, 537–547.
Hoogenboom, H. R., de Bruine, A. P., Hufton, S. E., Hoet, R. M., Arends, J. W., and Roovers, R. C. (1998) Antibody phage display technology and its applications. Immunotechnology 4, 1–20.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Humana Press Inc.
About this protocol
Cite this protocol
Hoogenboom, H.R. (2002). Overview of Antibody Phage-Display Technology and Its Applications. In: O’Brien, P.M., Aitken, R. (eds) Antibody Phage Display. Methods in Molecular Biology™, vol 178. Humana Press. https://doi.org/10.1385/1-59259-240-6:001
Download citation
DOI: https://doi.org/10.1385/1-59259-240-6:001
Publisher Name: Humana Press
Print ISBN: 978-0-89603-906-3
Online ISBN: 978-1-59259-240-1
eBook Packages: Springer Protocols