Key Points
-
p21 came into the spotlight as a mediator of p53 tumour suppressor activity and as an inhibitor of cell cycle progression owing to its ability to inhibit the activity of cyclin-dependent kinase (CDK)–cyclin complexes and proliferating cell nuclear antigen (PCNA).
-
The tumour suppressor activity of p21 stems from its role in inducing growth arrest, differentiation or senescence. Recently, it has become apparent that p21 is stimulated by many pathways that are independent of p53.
-
p21 directly regulates gene expression and other cellular events through protein–protein interactions that are independent of CDKs and PCNA.
-
Multiple transcription factors, ubiquitin ligases, and protein kinases regulate the transcription, stability and cellular localization of p21 thereby regulating its activity.
-
Recent data suggest a tumorigenic role of p21 in certain contexts that relies on its ability to suppress apoptosis and promote the assembly of type-D cyclins with CDK4 and CDK6.
-
Given that p21 is a tumour suppressor, but that it behaves as an oncogene in certain cellular contexts, targeting p21 or factors regulating its activity for therapeutic intervention is a promising but challenging task.
Abstract
One of the main engines that drives cellular transformation is the loss of proper control of the mammalian cell cycle. The cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) promotes cell cycle arrest in response to many stimuli. It is well positioned to function as both a sensor and an effector of multiple anti-proliferative signals. This Review focuses on recent advances in our understanding of the regulation of p21 and its biological functions with emphasis on its p53-independent tumour suppressor activities and paradoxical tumour-promoting activities, and their implications in cancer.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).
Nakanishi, M., Shimada, M. & Niida, H. Genetic instability in cancer cells by impaired cell cycle checkpoints. Cancer Sci. 97, 984–989 (2006).
Eastman, A. Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J. Cell Biochem. 91, 223–231 (2004).
Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).
Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).
Roninson, I. B. Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 179, 1–14 (2002).
Chen, J., Jackson, P. K., Kirschner, M. W. & Dutta, A. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374, 386–388 (1995).
Luo, Y., Hurwitz, J. & Massague, J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375, 159–161 (1995). References 7 and 8 show that two separate domains of p21 mediate its inhibitory activity on CDKs and PCNA.
Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).
Mandal, M., Bandyopadhyay, D., Goepfert, T. M. & Kumar, R. Interferon-induces expression of cyclin-dependent kinase-inhibitors p21WAF1 and p27Kip1 that prevent activation of cyclin-dependent kinase by CDK-activating kinase (CAK). Oncogene 16, 217–225 (1998).
Smits, V. A. et al. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J. Biol. Chem. 275, 30638–30643 (2000).
Abbas, T., Jha, S., Sherman, N. E. & Dutta, A. Autocatalytic phosphorylation of CDK2 at the activating Thr160. Cell Cycle 6, 843–852 (2007).
Chen, J., Saha, P., Kornbluth, S., Dynlacht, B. D. & Dutta, A. Cyclin-binding motifs are essential for the function of p21CIP1. Mol. Cell. Biol. 16, 4673–4682 (1996).
Zhu, L., Harlow, E. & Dynlacht, B. D. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 9, 1740–1752 (1995).
Shiyanov, P. et al. p21 disrupts the interaction between cdk2 and the E2F–p130 complex. Mol. Cell. Biol. 16, 737–744 (1996).
Saha, P., Eichbaum, Q., Silberman, E. D., Mayer, B. J. & Dutta, A. p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol. Cell. Biol. 17, 4338–4345 (1997).
Zhu, W., Abbas, T. & Dutta, A. DNA replication and genomic instability. Adv. Exp. Med. Biol. 570, 249–279 (2005).
Besson, A., Dowdy, S. F. & Roberts, J. M. CDK inhibitors: cell cycle regulators and beyond. Dev. Cell 14, 159–169 (2008).
Tetsu, O. & McCormick, F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3, 233–245 (2003).
Martin, A. et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell 7, 591–598 (2005).
Bates, S., Ryan, K. M., Phillips, A. C. & Vousden, K. H. Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression. Oncogene 17, 1691–1703 (1998).
Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).
Dulic, V., Stein, G. H., Far, D. F. & Reed, S. I. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol. Cell. Biol. 18, 546–557 (1998).
Medema, R. H., Klompmaker, R., Smits, V. A. & Rijksen, G. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 16, 431–441 (1998).
Niculescu, A. B., 3rd. et al. Effects of p21Cip1/Waf1 at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. 18, 629–643 (1998).
Chan, T. A., Hwang, P. M., Hermeking, H., Kinzler, K. W. & Vogelstein, B. Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev. 14, 1584–1588 (2000).
Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature Rev. Cancer 9, 153–166 (2009).
Chang, B. D. et al. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl Acad. Sci. USA 97, 4291–4296 (2000).
Delavaine, L. & La Thangue, N. B. Control of E2F activity by p21Waf1/Cip1. Oncogene 18, 5381–5392 (1999).
Devgan, V., Mammucari, C., Millar, S. E., Brisken, C. & Dotto, G. P. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 19, 1485–1495 (2005).
Coqueret, O. & Gascan, H. Functional interaction of STAT3 transcription factor with the cell cycle inhibitor p21WAF1/CIP1/SDI1. J. Biol. Chem. 275, 18794–18800 (2000).
Kitaura, H. et al. Reciprocal regulation via protein–protein interaction between c-Myc and p21cip1/waf1/sdi1 in DNA replication and transcription. J. Biol. Chem. 275, 10477–10483 (2000).
Lohr, K., Moritz, C., Contente, A. & Dobbelstein, M. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem. 278, 32507–32516 (2003).
Shats, I. et al. p53-dependent down-regulation of telomerase is mediated by p21waf1. J. Biol. Chem. 279, 50976–50985 (2004).
Taylor, W. R. & Stark, G. R. Regulation of the G2/M transition by p53. Oncogene 20, 1803–1815 (2001).
Gottifredi, V., Karni-Schmidt, O., Shieh, S. S. & Prives, C. p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol. Cell. Biol. 21, 1066–1076 (2001).
Yun, J. et al. Cdk2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway. J. Biol. Chem. 278, 36966–36972 (2003).
Park, M. et al. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res. 60, 542–545 (2000).
Snowden, A. W., Anderson, L. A., Webster, G. A. & Perkins, N. D. A novel transcriptional repression domain mediates p21WAF1/CIP1 induction of p300 transactivation. Mol. Cell. Biol. 20, 2676–2686 (2000).
Fritah, A., Saucier, C., Mester, J., Redeuilh, G. & Sabbah, M. p21WAF1/CIP1 selectively controls the transcriptional activity of estrogen receptor α. Mol. Cell. Biol. 25, 2419–2430 (2005).
Sheikh, M. S., Rochefort, H. & Garcia, M. Overexpression of p21WAF1/CIP1 induces growth arrest, giant cell formation and apoptosis in human breast carcinoma cell lines. Oncogene 11, 1899–1905 (1995).
Kaneuchi, M. et al. Induction of apoptosis by the p53–273L (Arg --> Leu) mutant in HSC3 cells without transactivation of p21Waf1/Cip1/Sdi1 and bax. Mol. Carcinog. 26, 44–52 (1999).
Okaichi, K. et al. A point mutation of human p53, which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2. Int. J. Radiat. Oncol. Biol. Phys. 45, 975–980 (1999).
Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001).
Li, Y., Dowbenko, D. & Lasky, L. A. AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J. Biol. Chem. 277, 11352–11361 (2002).
Meng, L. H., Kohn, K. W. & Pommier, Y. Dose–response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686288). Oncogene 26, 4806–4816 (2007).
Oh, Y. T., Chun, K. H., Park, B. D., Choi, J. S. & Lee, S. K. Regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 by protein kinase Cδ-mediated phosphorylation. Apoptosis 12, 1339–1347 (2007).
Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001). References 45 and 48 demonstrate that the phosphorylation of p21 by AKT1 — which results in its cytoplasmic localization — is crucial for the pro-survival functions of p21.
Zhang, Y., Fujita, N. & Tsuruo, T. Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene 18, 1131–1138 (1999).
Dotto, G. P. p21WAF1/Cip1: more than a break to the cell cycle? Biochim. Biophys. Acta 1471, M43–M56 (2000).
Gartel, A. L. The conflicting roles of the cdk inhibitor p21CIP1/WAF1 in apoptosis. Leuk. Res. 29, 1237–1238 (2005).
Mortusewicz, O., Schermelleh, L., Walter, J., Cardoso, M. C. & Leonhardt, H. Recruitment of DNA methyltransferase I to DNA repair sites. Proc. Natl Acad. Sci. USA 102, 8905–8909 (2005).
Walsh, C. P. & Xu, G. L. Cytosine methylation and DNA repair. Curr. Top. Microbiol. Immunol. 301, 283–315 (2006).
Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65–73 (1996).
Tom, S., Ranalli, T. A., Podust, V. N. & Bambara, R. A. Regulatory roles of p21 and apurinic/apyrimidinic endonuclease 1 in base excision repair. J. Biol. Chem. 276, 48781–48789 (2001).
Soria, G., Podhajcer, O., Prives, C. & Gottifredi, V. p21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 25, 2829–2838 (2006).
Soria, G., Speroni, J., Podhajcer, O. L., Prives, C. & Gottifredi, V. p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation. J. Cell Sci. 121, 3271–3282 (2008).
Fotedar, R., Bendjennat, M. & Fotedar, A. Role of p21WAF1 in the cellular response to UV. Cell Cycle 3, 134–137 (2004).
Gratchev, A. The nucleotide excision repair of DNA in human cells and its association with xeroderma pigmentosum. Adv. Exp. Med. Biol. 637, 113–119 (2008).
Stoyanova, T., Yoon, T., Kopanja, D., Mokyr, M. B. & Raychaudhuri, P. The xeroderma pigmentosum group E gene product DDB2 activates nucleotide excision repair by regulating the level of p21Waf1/Cip1. Mol. Cell. Biol. 28, 177–187 (2008). This study shows that downregulation of p21 is crucial for nucleotide excision repair mediated by DDB2.
Abbas, T. et al. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 22, 2496–2506 (2008).
Nishitani, H. et al. CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4–DDB1Cdt2 pathway during S phase and after UV irradiation. J. Biol. Chem. 283, 29045–29052 (2008).
Stuart, S. A. & Wang, J. Y. Ionizing radiation induces ATM-independent degradation of p21Cip1 in transformed cells. J. Biol. Chem. 30 Mar 2009 (doi:10.1074/jbc.M808810200).
Gartel, A. L. & Tyner, A. L. Transcriptional regulation of the p21WAF1/CIP1 gene. Exp. Cell Res. 246, 280–289 (1999).
Gartel, A. L., Najmabadi, F., Goufman, E. & Tyner, A. L. A role for E2F1 in Ras activation of p21WAF1/CIP1 transcription. Oncogene 19, 961–964 (2000).
Gartel, A. L. et al. Activation and repression of p21WAF1/CIP1 transcription by RB binding proteins. Oncogene 17, 3463–3469 (1998).
Hiyama, H., Iavarone, A. & Reeves, S. A. Regulation of the cdk inhibitor p21 gene during cell cycle progression is under the control of the transcription factor E2F. Oncogene 16, 1513–1523 (1998).
Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611 (1997).
Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nature Cell Biol. 9, 493–505 (2007).
Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).
Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).
Adnane, J. et al. Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 19, 5338–5347 (2000).
Missero, C., Di Cunto, F., Kiyokawa, H., Koff, A. & Dotto, G. P. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev. 10, 3065–3075 (1996).
Bearss, D. J., Lee, R. J., Troyer, D. A., Pestell, R. G. & Windle, J. J. Differential effects of p21WAF1/CIP1 deficiency on MMTV–ras and MMTV–myc mammary tumor properties. Cancer Res. 62, 2077–2084 (2002).
Swarbrick, A., Roy., E., Allen, T. & Bishop, J. M. Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc. Natl Acad. Sci. USA 105, 5402–5407 (2008). This study demonstrates that ID1 can suppress HRAS-mediated senescence despite high levels of p21.
Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S. & Der, C. J. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15, 6443–6453 (1995).
Qiu, R. G., Chen, J., McCormick, F. & Symons, M. A role for Rho in Ras transformation. Proc. Natl Acad. Sci. USA 92, 11781–11785 (1995).
Olson, M. F., Paterson, H. F. & Marshall, C. J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394, 295–299 (1998).
Schoppmann, S. F. et al. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int. J. Cancer 104, 677–682 (2003).
Gupta, G. P. et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc. Natl Acad. Sci. USA 104, 19506–19511 (2007).
Ouyang, X. S., Wang, X., Lee, D. T., Tsao, S. W. & Wong, Y. C. Over expression of ID-1 in prostate cancer. J. Urol. 167, 2598–2602 (2002).
Forootan, S. S. et al. Increased Id-1 expression is significantly associated with poor survival of patients with prostate cancer. Hum. Pathol. 38, 1321–1329 (2007).
Schindl, M. et al. Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin. Cancer Res. 9, 779–785 (2003).
Black, A. R., Black, J. D. & Azizkhan-Clifford, J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell Physiol. 188, 143–160 (2001).
Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).
Chen, C. et al. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am. J. Pathol. 162, 1349–1354 (2003).
Ito, G. et al. Kruppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells. Cancer Res. 64, 3838–3843 (2004).
Kremer-Tal, S. et al. Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma. Hepatology 40, 1047–1052 (2004).
Reeves, H. L. et al. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology 126, 1090–1103 (2004).
Li, D. et al. Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation. Cancer Res. 65, 9216–9225 (2005).
Kim, Y. et al. Transcriptional activation of transforming growth factor β1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J. Biol. Chem. 273, 33750–33758 (1998).
Rowland, B. D. & Peeper, D. S. KLF4, p21 and context-dependent opposing forces in cancer. Nature Rev. Cancer 6, 11–23 (2006).
Zhao, W. et al. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23, 395–402 (2004).
Zhang, W. et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J. Biol. Chem. 275, 18391–18398 (2000).
Yoon, H. S., Chen, X. & Yang, V. W. Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J. Biol. Chem. 278, 2101–2105 (2003).
Rowland, B. D., Bernards, R. & Peeper, D. S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biol. 7, 1074–1082 (2005).
Freund, J. N., Domon-Dell, C., Kedinger, M. & Duluc, I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem. Cell Biol. 76, 957–969 (1998).
Ee, H. C., Erler, T., Bhathal, P. S., Young, G. P. & James, R. J. Cdx-2 homeodomain protein expression in human and rat colorectal adenoma and carcinoma. Am. J. Pathol. 147, 586–592 (1995).
Mallo, G. V. et al. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int. J. Cancer 74, 35–44 (1997).
Suh, E. & Traber, P. G. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol. Cell. Biol. 16, 619–625 (1996).
Bai, Y. Q., Miyake, S., Iwai, T. & Yuasa, Y. CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene. Oncogene 22, 7942–7949 (2003).
Polyak, K., Hamilton, S. R., Vogelstein, B. & Kinzler, K. W. Early alteration of cell-cycle-regulated gene expression in colorectal neoplasia. Am. J. Pathol. 149, 381–387 (1996).
Bukholm, I. K. & Nesland, J. M. Protein expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Arch. 436, 224–228 (2000).
Dang, D. T., Mahatan, C. S., Dang, L. H., Agboola, I. A. & Yang, V. W. Expression of the gut-enriched Kruppel-like factor (Kruppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2. Oncogene 20, 4884–4890 (2001).
da Costa, L. T. et al. CDX2 is mutated in a colorectal cancer with normal APC/β-catenin signaling. Oncogene 18, 5010–5014 (1999).
Mukherjee, S. & Conrad, S. E. c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells. J. Biol. Chem. 280, 17617–17625 (2005).
Jung, P., Menssen, A., Mayr, D. & Hermeking, H. AP4 encodes a c-MYC-inducible repressor of p21. Proc. Natl Acad. Sci. USA 105, 15046–15051 (2008). This paper shows that the transcription factor AP4 represses the transcription of CDKN1A in response to MYC and can block TGFβ-induced induction of p21.
Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).
Petrocca, F. et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13, 272–286 (2008).
Jascur, T. et al. Regulation of p21WAF1/CIP1 stability by WISp39, a Hsp90 binding TPR protein. Mol. Cell 17, 237–249 (2005). This article shows the stabilization of newly formed p21 by WISP39 and demonstrates that this is essential for the DNA damage-induced induction of p21.
Sheaff, R. J. et al. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell 5, 403–410 (2000).
Touitou, R. et al. A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 α-subunit of the 20S proteasome. EMBO J. 20, 2367–2375 (2001).
Li, X. et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGγ-proteasome pathway. Mol. Cell 26, 831–842 (2007).
Chen, X., Barton, L. F., Chi, Y., Clurman, B. E. & Roberts, J. M. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGγ proteasome. Mol. Cell 26, 843–852 (2007).
Gong, J., Ammanamanchi, S., Ko, T. C. & Brattain, M. G. Transforming growth factor beta 1 increases the stability of p21/WAF1/CIP1 protein and inhibits CDK2 kinase activity in human colon carcinoma FET cells. Cancer Res. 63, 3340–3346 (2003).
Beck, S. E., Jung, B. H., Del Rosario, E., Gomez, J. & Carethers, J. M. BMP-induced growth suppression in colon cancer cells is mediated by p21WAF1 stabilization and modulated by RAS/ERK. Cell Signal. 19, 1465–1472 (2007).
Milano, A. et al. Oxidative DNA damage and activation of c-Jun N-terminal kinase pathway in fibroblasts from patients with hereditary spastic paraplegia. Cell. Mol. Neurobiol. 25, 1245–1254 (2005).
Barnouin, K. et al. H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. J. Biol. Chem. 277, 13761–13770 (2002).
Fan, Y. et al. c-Jun NH2-terminal kinase decreases ubiquitination and promotes stabilization of p21WAF1/CIP1 in K562 cell. Biochem. Biophys. Res. Commun. 355, 263–268 (2007).
Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev. Cancer 8, 438–449 (2008).
Kim, Y., Starostina, N. G. & Kipreos, E. T. The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev. 22, 2507–2519 (2008). References 61, 62 and 121 show the ubiquitin-dependent destruction of p21 during S-phase and after ultraviolet irradiation by the CRL4CDT2 E3 ubiquitin ligase complex, which is dependent on PCNA both in vivo and in vitro.
Ueki, T. et al. Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells. Oncogene 27, 5672–5683 (2008).
Pan, H. W. et al. Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma. Cell Cycle 5, 2676–2687 (2006).
Chen, L. C. et al. The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res. 58, 3677–3683 (1998).
Yasui, K. et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35, 1476–1484 (2002).
Child., E. S. & Mann, D. J. The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5, 1313–1319 (2006).
Bornstein, G. et al. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S. phase. J. Biol. Chem. 278, 25752–25757 (2003). This study showed the ubiquitin-dependent ubiquitylation of p21 by the SCFSKP2 complex in S phase cells.
Rossig, L. et al. Akt-dependent phosphorylation of p21Cip1 regulates PCNA binding and proliferation of endothelial cells. Mol. Cell. Biol. 21, 5644–5657 (2001).
Winters, Z. E., Leek, R. D., Bradburn, M. J., Norbury, C. J. & Harris, A. L. Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/ neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res. 5, R242–249 (2003).
Xia, W. et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin. Cancer Res. 10, 3815–3824 (2004).
Ping, B. et al. Cytoplasmic expression of p21CIP1/WAF1 is correlated with IKKβ overexpression in human breast cancers. Int. J. Oncol. 29, 1103–1110 (2006).
Liang, J. & Slingerland, J. M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2, 339–345 (2003).
Rossig, L., Badorff, C., Holzmann, Y., Zeiher, A. M. & Dimmeler, S. Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J. Biol. Chem. 277, 9684–9689 (2002).
Scott, M. T., Ingram, A. & Ball, K. L. PDK1-dependent activation of atypical PKC leads to degradation of the p21 tumour modifier protein. EMBO J. 21, 6771–6780 (2002).
el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993). The first study showing that p21 is likely to mediate the tumour suppressor activity of p53.
Efeyan, A., Collado, M., Velasco-Miguel, S. & Serrano, M. Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene 26, 1645–1649 (2007).
Barboza, J. A., Liu, G., Ju, Z., El-Naggar, A. K. & Lozano, G. p21 delays tumor onset by preservation of chromosomal stability. Proc. Natl Acad. Sci. USA 103, 19842–19847 (2006).
Martin-Caballero, J., Flores, J. M., Garcia-Palencia, P. & Serrano, M. Tumor susceptibility of p21Waf1/Cip1-deficient mice. Cancer Res. 61, 6234–6238 (2001). This study demonstrates that deletion of Cdkn1a in mice results in spontaneous tumours but with late onset.
Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).
Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).
Kamijo, T., Bodner, S., van de Kamp, E., Randle, D. H. & Sherr, C. J. Tumor spectrum in ARF-deficient mice. Cancer Res. 59, 2217–2222 (1999).
Shiohara, M. et al. Absence of WAF1 mutations in a variety of human malignancies. Blood 84, 3781–3784 (1994).
McKenzie, K. E. et al. Altered WAF1 genes do not play a role in abnormal cell cycle regulation in breast cancers lacking p53 mutations. Clin. Cancer Res. 3, 1669–1673 (1997).
Patino-Garcia, A., Sotillo-Pineiro, E. & Sierrasesumaga-Ariznabarreta, L. p21WAF1 mutation is not a predominant alteration in pediatric bone tumors. Pediatr. Res. 43, 393–395 (1998).
Topley, G. I., Okuyama, R., Gonzales, J. G., Conti, C. & Dotto, G. P. p21WAF1/Cip1 functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc. Natl Acad. Sci. USA 96, 9089–9094 (1999).
Poole, A. J., Heap, D., Carroll, R. E. & Tyner, A. L. Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene 23, 8128–8134 (2004).
Jackson, R. J. et al. Loss of the cell cycle inhibitors p21Cip1 and p27Kip1 enhances tumorigenesis in knockout mouse models. Oncogene 21, 8486–8497 (2002).
Philipp, J., Vo, K., Gurley, K. E., Seidel, K. & Kemp, C. J. Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis. Oncogene 18, 4689–4698 (1999).
Peterson, L. F., Yan, M. & Zhang, D. E. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1–ETO. Blood 109, 4392–4398 (2007).
Carnero, A. & Beach, D. H. Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23, 6006–6011 (2004).
Forster, K. et al. Role of p21WAF1/CIP1 as an attenuator of both proliferative and drug-induced apoptotic signals in BCR–ABL-transformed hematopoietic cells. Ann. Hematol. 87, 183–193 (2008).
Carbone, C. J., Grana, X., Reddy, E. P. & Haines, D. S. p21 loss cooperates with INK4 inactivation facilitating immortalization and Bcl-2-mediated anchorage-independent growth of oncogene-transduced primary mouse fibroblasts. Cancer Res. 67, 4130–4137 (2007).
Shen, K. C. et al. ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res. 65, 8747–8753 (2005). References 137 and 154 show that p21 functions in vivo to preserve chromosomal integrity and to guard against genomic instability.
Edmonston, T. B. et al. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with respect to prognostic markers. Hum. Pathol. 31, 1506–1514 (2000).
Ogino, S. et al. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer. J. Pathol. 210, 147–154 (2006).
Minucci, S. et al. PML–RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 100, 2989–2995 (2002).
Viale, A. et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457, 51–56 (2009). This study provides compelling evidence for the role of p21 in maintaining genomic stability in leukaemia stem cells, thereby maintaining self-renewal capacity.
Gartel, A. L. Is p21 an oncogene? Mol. Cancer Ther. 5, 1385–1386 (2006).
Liu, S., Bishop, W. R. & Liu, M. Differential effects of cell cycle regulatory protein p21WAF1/Cip1 on apoptosis and sensitivity to cancer chemotherapy. Drug Resist. Updat. 6, 183–195 (2003).
De la Cueva, E. et al. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 25, 4128–4132 (2006).
Wang, Y. A., Elson, A. & Leder, P. Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc. Natl Acad. Sci. USA 94, 14590–14595 (1997).
LaBaer, J. et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11, 847–862 (1997).
Liu, Y. et al. Somatic cell type specific gene transfer reveals a tumor-promoting function for p21Waf1/Cip1. EMBO J. 26, 4683–4693 (2007).
Alt, J. R., Gladden, A. B. & Diehl, J. A. p21Cip1 promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J. Biol. Chem. 277, 8517–8523 (2002).
Kehn, K. et al. The role of cyclin D2 and p21/waf1 in human T-cell leukemia virus type 1 infected cells. Retrovirology 1, 6 (2004).
Jones, J. M., Cui, X. S., Medina, D. & Donehower, L. A. Heterozygosity of p21WAF1/CIP1 enhances tumor cell proliferation and cyclin D1-associated kinase activity in a murine mammary cancer model. Cell Growth Differ. 10, 213–222 (1999).
Ocker, M. & Schneider-Stock, R. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int. J. Biochem. Cell Biol. 39, 1367–1374 (2007).
Ukomadu, C. & Dutta, A. p21-dependent inhibition of colon cancer cell growth by mevastatin is independent of inhibition of G1 cyclin-dependent kinases. J. Biol. Chem. 278, 43586–43594 (2003).
Sassano, A. & Platanias, L. C. Statins in tumor suppression. Cancer Lett. 260, 11–19 (2008).
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).
Wu, C. H. et al. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. USA 104, 13028–13033 (2007). References 171 and 172 demonstrate that the restoration of p53 function or inactivation of MYC (in a wild-type p53 background) result in tumour regression in animal tumour models through the induction of senescence.
Burkhart, B. A., Alcorta, D. A., Chiao, C., Isaacs, J. S. & Barrett, J. C. Two posttranscriptional pathways that regulate p21Cip1/Waf1/Sdi1 are identified by HPV16-E6 interaction and correlate with life span and cellular senescence. Exp. Cell Res. 247, 168–175 (1999).
Giannoudis, A. & Herrington, C. S. Differential expression of p53 and p21 in low grade cervical squamous intraepithelial lesions infected with low, intermediate, and high risk human papillomaviruses. Cancer 89, 1300–1307 (2000).
Xu, C., Meikrantz, W., Schlegel, R. & Sager, R. The human papilloma virus 16E6 gene sensitizes human mammary epithelial cells to apoptosis induced by DNA damage. Proc. Natl Acad. Sci. USA 92, 7829–7833 (1995).
Fan, X., Liu, Y. & Chen, J. J. Down-regulation of p21 contributes to apoptosis induced by HPV E6 in human mammary epithelial cells. Apoptosis 10, 63–73 (2005).
Finzer, P., Aguilar-Lemarroy, A. & Rosl, F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett. 188, 15–24 (2002).
Alam, S., Sen, E., Brashear, H. & Meyers, C. Adeno-associated virus type 2 increases proteosome-dependent degradation of p21WAF1 in a human papillomavirus type 31b-positive cervical carcinoma line. J. Virol. 80, 4927–4939 (2006).
Yoshida, I. et al. Inhibition of p21/Waf1/Cip1/Sdi1 expression by hepatitis C virus core protein. Microbiol. Immunol. 45, 689–697 (2001).
Jarviluoma, A. et al. Phosphorylation of the cyclin-dependent kinase inhibitor p21Cip1 on serine 130 is essential for viral cyclin-mediated bypass of a p21Cip1-imposed G1 arrest. Mol. Cell. Biol. 26, 2430–2440 (2006).
Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000). This study provides the first genetic evidence supporting a role of p21 in maintaining quiescence in haematopoietic stem cells.
Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).
Takubo, K. et al. Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest. Cell Stem Cell 2, 170–182 (2008).
Mantel, C. et al. Involvement of p21cip-1 and p27kip-1 in the molecular mechanisms of steel factor-induced proliferative synergy in vitro and of p21cip-1 in the maintenance of stem/progenitor cells in vivo. Blood 88, 3710–3719 (1996).
Braun, S. E. et al. A positive effect of p21cip1/waf1 in the colony formation from murine myeloid progenitor cells as assessed by retroviral-mediated gene transfer. Blood Cells Mol. Dis. 24, 138–148 (1998).
Weinberg, W. C. et al. Genetic deletion of p21WAF1 enhances papilloma formation but not malignant conversion in experimental mouse skin carcinogenesis. Cancer Res. 59, 2050–2054 (1999).
Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet. 39, 99–105 (2007).
O'Reilly, M. A. Redox activation of p21Cip1/WAF1/Sdi1: a multifunctional regulator of cell survival and death. Antioxid. Redox Signal. 7, 108–118 (2005).
Gartel, A. L. & Shchors, K. Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp. Cell Res. 283, 17–21 (2003).
Hwang-Verslues, W. W. & Sladek, F. M. Nuclear receptor hepatocyte nuclear factor 4α1 competes with oncoprotein c-Myc for control of the p21/WAF1 promoter. Mol. Endocrinol. 22, 78–90 (2008).
Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005).
Yu, Z. K., Gervais, J. L. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).
Sarmento, L. M. et al. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27Kip1 degradation. J. Exp. Med. 202, 157–168 (2005).
Wang, W., Nacusi, L., Sheaff, R. J. & Liu, X. Ubiquitination of p21Cip1/WAF1 by SCFSkp2: substrate requirement and ubiquitination site selection. Biochemistry 44, 14553–14564 (2005).
Amador, V., Ge, S., Santamaria, P. G., Guardavaccaro, D. & Pagano, M. APC/CCdc20 controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol. Cell 27, 462–473 (2007). This paper demonstrates the destruction of p21 and alleviation of CDK1 kinase activity at the G2/M transition by the APC/CCDC20 ubiquitin ligase.
Zirbes, T. K. et al. Prognostic impact of p21/waf1/cip1 in colorectal cancer. Int. J. Cancer 89, 14–18 (2000).
Mitomi, H. et al. Venous invasion and down-regulation of p21WAF1/CIP1 are associated with metastasis in colorectal carcinomas. Hepatogastroenterology 52, 1421–1426 (2005).
Hafkamp, H. C. et al. p21Cip1/WAF1 expression is strongly associated with HPV-positive tonsillar carcinoma and a favorable prognosis. Mod. Pathol. 20 Mar 2009 (doi: 10.1038/modpathol.2009.23).
Aoyagi, K. et al. The expression of p53, p21 and TGF beta 1 in gastric carcinoma. Kurume Med. J. 50, 1–7 (2003).
Balbin, M. et al. Functional analysis of a p21WAF1,CIP1,SDI1 mutant (Arg94→Trp) identified in a human breast carcinoma. Evidence that the mutation impairs the ability of p21 to inhibit cyclin-dependent kinases. J. Biol. Chem. 271, 15782–15786 (1996).
Bahl, R. et al. Novel polymorphism in p21waf1/cip1 cyclin dependent kinase inhibitor gene: association with human esophageal cancer. Oncogene 19, 323–328 (2000).
Ralhan, R., Agarwal, S., Mathur, M., Wasylyk, B. & Srivastava, A. Association between polymorphism in p21Waf1/Cip1 cyclin-dependent kinase inhibitor gene and human oral cancer. Clin. Cancer Res. 6, 2440–2447 (2000).
Komiya, T. et al. p21 expression as a predictor for favorable prognosis in squamous cell carcinoma of the lung. Clin. Cancer Res. 3, 1831–1835 (1997).
Lu, X., Toki, T., Konishi, I., Nikaido, T. & Fujii, S. Expression of p21WAF1/CIP1 in adenocarcinoma of the uterine cervix: a possible immunohistochemical marker of a favorable prognosis. Cancer 82, 2409–2417 (1998).
Biankin, A. V. et al. Overexpression of p21WAF1/CIP1 is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res. 61, 8830–8837 (2001).
Caffo, O. et al. Prognostic value of p21WAF1 and p53 expression in breast carcinoma: an immunohistochemical study in 261 patients with long-term follow-up. Clin. Cancer Res. 2, 1591–1599 (1996).
Ogawa, M. et al. A combination analysis of p53 and p21 in gastric carcinoma as a strong indicator for prognosis. Int. J. Mol. Med. 7, 479–483 (2001).
Anttila, M. A. et al. p21/WAF1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer. Br. J. Cancer 79, 1870–1878 (1999).
Kapranos, N. et al. p53, p21 and p27 protein expression in head and neck cancer and their prognostic value. Anticancer Res. 21, 521–528 (2001).
Korkolopoulou, P. et al. WAF1/p21 protein expression is an independent prognostic indicator in superficial and invasive bladder cancer. Appl. Immunohistochem. Mol. Morphol. 8, 285–292 (2000).
Winters, Z. E. et al. Subcellular localisation of cyclin B, Cdc2 and p21WAF1/CIP1 in breast cancer. association with prognosis. Eur. J. Cancer 37, 2405–2412 (2001).
Wagayama, H. et al. High expression of p21WAF1/CIP1 is correlated with human hepatocellular carcinoma in patients with hepatitis C virus-associated chronic liver diseases. Hum. Pathol. 33, 429–434 (2002).
Shiraki, K. & Wagayama, H. Cytoplasmic p21WAF1/CIP1 expression in human hepatocellular carcinomas. Liver Int. 26, 1018–1019 (2006).
Ohata, M., Nakamura, S., Fujita, H. & Isemura, M. Prognostic implications of p21Waf1/Cip1 immunolocalization in multiple myeloma. Biomed. Res. 26, 91–98 (2005).
Zhang, W. et al. High levels of constitutive WAF1/Cip1 protein are associated with chemoresistance in acute myelogenous leukemia. Clin. Cancer Res. 1, 1051–1057 (1995).
Korkolopoulou, P., Kouzelis, K., Christodoulou, P., Papanikolaou, A. & Thomas-Tsagli, E. Expression of retinoblastoma gene product and p21WAF1/Cip1 protein in gliomas: correlations with proliferation markers, p53 expression and survival. Acta Neuropathol. 95, 617–624 (1998).
Jung, J. M. et al. Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene 11, 2021–2028 (1995).
Baretton, G. B., Klenk, U., Diebold, J., Schmeller, N. & Lohrs, U. Proliferation- and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br. J. Cancer 80, 546–555 (1999).
Aaltomaa, S., Lipponen, P., Eskelinen, M., Ala-Opas, M. & Kosma, V. M. Prognostic value and expression of p21waf1/cip1 protein in prostate cancer. Prostate 39, 8–15 (1999).
Cheung, T. H. et al. Aberrant expression of p21WAF1/CIP1 and p27KIP1 in cervical carcinoma. Cancer Lett. 172, 93–98 (2001).
Bae, D. S. et al. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol. Oncol. 81, 341–347 (2001).
Ferrandina, G. et al. p21WAF1/CIP1 protein expression in primary ovarian cancer. Int. J. Oncol. 17, 1231–1235 (2000).
Sarbia, M. et al. Expression of p21WAF1 predicts outcome of esophageal cancer patients treated by surgery alone or by combined therapy modalities. Clin. Cancer Res. 4, 2615–2623 (1998).
Pindzola, J. A., Palazzo, J. P., Kovatich, A. J., Tuma, B. & Nobel, M. Expression of p21WAF1/CIP1 in soft tissue sarcomas: a comparative immunohistochemical study with p53 and Ki-67. Pathol. Res. Pract. 194, 685–691 (1998).
Brugarolas, J., Bronson, R. T. & Jacks, T. p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J. Cell Biol. 141, 503–514 (1998).
Franklin, D. S., Godfrey, V. L., O'Brien, D. A., Deng, C. & Xiong, Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol. Cell. Biol. 20, 6147–6158 (2000).
Yang, W. C. et al. Targeted inactivation of the p21WAF1/cip1 gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res. 61, 565–569 (2001).
Yang, W. et al. Inactivation of p21WAF1/cip1 enhances intestinal tumor formation in Muc2−/− mice. Am. J. Pathol. 166, 1239–1246 (2005).
Lebel, M., Cardiff, R. D. & Leder, P. Tumorigenic effect of nonfunctional p53 or p21 in mice mutant in the Werner syndrome helicase. Cancer Res. 61, 1816–1819 (2001).
Martin-Caballero, J., Flores, J. M., Garcia-Palencia, P., Collado, M. & Serrano, M. Different cooperating effect of p21 or p27 deficiency in combination with INK4a/ARF deletion in mice. Oncogene 23, 8231–8237 (2004).
Acknowledgements
Owing to the extensive literature concerning the regulation and activity of p21, it was impossible to account for many interesting findings in a single Review. We therefore apologize to colleagues whose work was not cited. This work was supported by grants from the National Institutes of Health (Cancer Training Grant T32CA009109 for T.A. and R01CA89406 for A.D.).
Author information
Authors and Affiliations
Corresponding authors
Related links
Glossary
- Senescence
-
A state of permanent growth arrest in G1 that is associated with changes in cell shape, cell adhesion and gene expression.
- Cyclin-dependent kinase
-
(CDK). In association with their cyclin regulatory subunits, CDKs control progression through key cell cycle transitions.
- Activation segment
-
The phosphorylation at a specific amino acid is required for maximal enzymatic activity of many kinases. In human cyclin-dependent kinases 1 and 2, the residues are Thr161 and Thr160, respectively, and are located within the T loop of kinase subdomain VIII.
- p300–CREBBP
-
(p300–CREB-binding protein). Two transcriptional co-activators, each possessing a histone acetyltransferase and a bromodomain (which binds acetylated lysines), that interact with many transcription factors and activate gene transcription.
- DNMT1
-
(DNA (cytosine-5)-methyltransferase 1). An enzyme that has a significant role in methylating cytosine residues shortly after replication and DNA repair, and in the regulation of tissue-specific patterns of methylated cytosines.
- Mismatch repair
-
Corrects DNA replication errors (base–base or insertion or deletion mismatches) caused by DNA polymerase errors.
- Base excision repair
-
A DNA repair pathway that operates on small DNA lesions such as oxidized or reduced bases, fragmented or non-bulky adducts, or those produced by methylating agents.
- Translesion DNA synthesis
-
A mechanism during DNA replication in which the standard DNA polymerase is temporarily exchanged for a specialized polymerase that can synthesize DNA across base damage on the template strand.
- Nucleotide excision repair
-
A process that removes large DNA adducts or base modifications that distort the double helix and uses the opposite strand as template for repair.
- CRL4
-
A cullin–RING ubiquitin ligase (CRL), composed of DDB1 (DNA damage-binding protein 1), a CUL4A or CUL4B E3 ligase subunit, and RBX1. CRLs recognize their substrates by interacting with one of many substrate recognition factors collectively called DDB1- and CUL4-associated factors.
- GC boxes
-
GC-rich sequences and related GT or CACCC boxes. Krüppel-like transcription factors bind with varying affinities to these sequences (also termed as SP1 sites) to regulate gene transcription.
- F box protein
-
F box proteins contain at least one protein–protein interaction F-box motif (about 50 amino acids). SKP2, the first identified F-box protein, is one of the three SCF complex components that recognize substrates for destruction through the SCFSKP2 E3 ubiquitin ligase.
- Substrate recognition factor
-
(SRF). SRFs are integral components of some cullin–RING ubiquitin ligase complexes and dictate substrate specificity. For example, SKP2 and CDT2 are p27 and p21 SRFs for the CRL1 (cullin–RING ubiquitin ligase 1) and CRL4 ubiquitin ligase complexes respectively.
- Microsatellite instability
-
A condition manifested by damaged DNA due to defects in the normal DNA repair process and characterized by unstable sequences of repeating units 1–4 base pairs in length.
- T cell leukaemia virus type 1
-
A retrovirus that is believed to be the cause of a rare cancer of T cells, adult T cell leukaemia–lymphoma.
- Histone deacetylase
-
Histone deacetylases are enzymes that regulate chromatin structure and function through the removal of the acetyl group from the lysine residues of core nucleosomal histones.
Rights and permissions
About this article
Cite this article
Abbas, T., Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9, 400–414 (2009). https://doi.org/10.1038/nrc2657
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrc2657
This article is cited by
-
Integrative modeling uncovers p21-driven drug resistance and prioritizes therapies for PIK3CA-mutant breast cancer
npj Precision Oncology (2024)
-
Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis
Nature Cancer (2024)
-
High fat diet-induced downregulation of TRPV2 mediates hepatic steatosis via p21 signalling
Journal of Physiology and Biochemistry (2024)
-
Carcinogenicity of nicotine and signal pathways in cancer progression: a review
Environmental Chemistry Letters (2024)
-
INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death
Cellular and Molecular Life Sciences (2024)