Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions

Abstract

The corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens. In n-3–deficient mice, presynaptic cannabinoid CB1 receptors (CB1Rs) normally responding to endocannabinoids were uncoupled from their effector Gi/o proteins. Finally, the dietary-induced reduction of CB1R functions in mood-controlling structures was associated with impaired emotional behavior. These findings identify a plausible synaptic substrate for the behavioral alterations caused by the n-3 PUFAs deficiency that is often observed in western diets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: n-3/n-6 PUFA dietary imbalance alters PUFAs level in mouse brain.
Figure 2: Endocannabinoid-dependent synaptic plasticity is absent in n-3–deficient mice.
Figure 3: Nutritional n-3 deficiency did not alter other forms of synaptic plasticity.
Figure 4: Nutritional n-3 deficiency reduces synaptic CB1R efficiency and CB1R coupling to Gi/o-proteins.
Figure 5: Anxiogenic and prodepressant-like effects of dietary n-3 deficiency.

Similar content being viewed by others

References

  1. Bourre, J.M. Dietary omega-3 Fatty acids and psychiatry: mood, behaviour, stress, depression, dementia and aging. J. Nutr. Health Aging 9, 31–38 (2005).

    CAS  PubMed  Google Scholar 

  2. Rapoport, S.I., Rao, J.S. & Igarashi, M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot. Essent. Fatty Acids 77, 251–261 (2007).

    Article  CAS  Google Scholar 

  3. Lauritzen, L., Hansen, H.S., Jorgensen, M.H. & Michaelsen, K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40, 1–94 (2001).

    Article  CAS  Google Scholar 

  4. Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: medical implications. World Rev. Nutr. Diet. 100, 1–21 (2009).

    Article  CAS  Google Scholar 

  5. Parker, G. et al. Omega-3 fatty acids and mood disorders. Am. J. Psychiatry 163, 969–978 (2006).

    Article  Google Scholar 

  6. Mingam, R. et al. Uncoupling of interleukin-6 from its signaling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur. J. Neurosci. 28, 1877–1886 (2008).

    Article  Google Scholar 

  7. Chalon, S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fatty Acids 75, 259–269 (2006).

    Article  CAS  Google Scholar 

  8. Mackie, K. Signaling via CNS cannabinoid receptors. Mol. Cell. Endocrinol. 286, S60–S65 (2008).

    Article  CAS  Google Scholar 

  9. Heifets, B.D. & Castillo, P.E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol. 71, 283–306 (2009).

    Article  CAS  Google Scholar 

  10. Leweke, F.M. & Koethe, D. Cannabis and psychiatric disorders: it is not only addiction. Addict. Biol. 13, 264–275 (2008).

    Article  Google Scholar 

  11. Lutz, B. Endocannabinoid signals in the control of emotion. Curr. Opin. Pharmacol. 9, 46–52 (2009).

    Article  CAS  Google Scholar 

  12. Hill, M.N. et al. The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants. Trends Pharmacol. Sci. 30, 484–493 (2009).

    Article  CAS  Google Scholar 

  13. Krishnan, V. & Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    Article  CAS  Google Scholar 

  14. Nestler, E.J. & Carlezon, W.A. Jr. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59, 1151–1159 (2006).

    Article  CAS  Google Scholar 

  15. Lafourcade, M. et al. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS ONE 2, e709 (2007).

    Article  Google Scholar 

  16. Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O.J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 99, 8384–8388 (2002).

    Article  CAS  Google Scholar 

  17. Kauer, J.A. & Malenka, R.C. LTP: AMPA receptors trading places. Nat. Neurosci. 9, 593–594 (2006).

    Article  CAS  Google Scholar 

  18. Hayton, S.J. Lovett-Barron, M., Dumont, E.C. & Olmstead, M.C. Target-specific encoding of response inhibition: increased contribution of AMPA to NMDA receptors at excitatory synapses in the prefrontal cortex. J. Neurosci. 30, 11493–11500 (2010).

    Article  CAS  Google Scholar 

  19. Robbe, D., Alonso, G., Chaumont, S., Bockaert, J. & Manzoni, O.J. Role of p/q-Ca2+ channels in metabotropic glutamate receptor 2/3-dependent presynaptic long-term depression at nucleus accumbens synapses. J. Neurosci. 22, 4346–4356 (2002).

    Article  CAS  Google Scholar 

  20. Mato, S., Lafourcade, M., Robbe, D., Bakiri, Y. & Manzoni, O.J. Role of the cyclic-AMP/PKA cascade and of P/Q-type Ca. channels in endocannabinoid-mediated long-term depression in the nucleus accumbens. Neuropharmacology 54, 87–94 (2008).

    Article  CAS  Google Scholar 

  21. Mato, S. et al. A single in vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat. Neurosci. 7, 585–586 (2004).

    Article  CAS  Google Scholar 

  22. Mikasova, L., Groc, L., Choquet, D. & Manzoni, O.J. Altered surface trafficking of presynaptic cannabinoid type 1 receptor in and out synaptic terminals parallels receptor desensitization. Proc. Natl. Acad. Sci. USA 105, 18596–18601 (2008).

    Article  CAS  Google Scholar 

  23. Mato, S., Robbe, D., Puente, N., Grandes, P. & Manzoni, O.J. Presynaptic homeostatic plasticity rescues long-term depression after chronic Delta 9-tetrahydrocannabinol exposure. J. Neurosci. 25, 11619–11627 (2005).

    Article  CAS  Google Scholar 

  24. Martin, B.R. Sim-Selley, L.J. & Selley, D.E. Signaling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol. Sci. 25, 325–330 (2004).

    Article  CAS  Google Scholar 

  25. Schlosburg, J.E., Sim-Selley, L.J., Liu, Q.S., Lichtman, A.H. & Cravatt, B.F. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 13, 1113–1119 (2010).

    Article  CAS  Google Scholar 

  26. Berger, A. et al. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc. Natl. Acad. Sci. USA 98, 6402–6406 (2001).

    Article  CAS  Google Scholar 

  27. Matias, I. et al. Effect of polyunsaturated fatty acids on endocannabinoid and N-acyl-ethanolamine levels in mouse adipocytes. Biochim. Biophys. Acta 1781, 52–60 (2008).

    Article  CAS  Google Scholar 

  28. Watanabe, S., Doshi, M. & Hamazaki, T. n-3 Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice. Prostaglandins Leukot. Essent. Fatty Acids 69, 51–59 (2003).

    Article  CAS  Google Scholar 

  29. Vinod, K.Y. & Hungund, B.L. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol. Sci. 27, 539–545 (2006).

    Article  CAS  Google Scholar 

  30. DeMar, J.C. Jr. et al. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J. Lipid Res. 47, 172–180 (2006).

    Article  CAS  Google Scholar 

  31. Porsolt, R.D., Brossard, G., Hautbois, C. & Roux, S. Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci. 14, 8.10A.1–8.10A.10 (2001).

    Google Scholar 

  32. Haller, J., Varga, B., Ledent, C., Barna, I. & Freund, T.F. Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur. J. Neurosci. 19, 1906–1912 (2004).

    Article  CAS  Google Scholar 

  33. Urigüen, L. Perez-Rial, S., Ledent, C., Palomo, T. & Manzanares, J. Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46, 966–973 (2004).

    Article  Google Scholar 

  34. Simon, P., Dupuis, R. & Costentin, J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav. Brain Res. 61, 59–64 (1994).

    Article  CAS  Google Scholar 

  35. Bambico, F.R., Katz, N., Debonnel, G. & Gobbi, G. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J. Neurosci. 27, 11700–11711 (2007).

    Article  CAS  Google Scholar 

  36. Evans, D.L. et al. Mood disorders in the medically ill: scientific review and recommendations. Biol. Psychiatry 58, 175–189 (2005).

    Article  Google Scholar 

  37. Samat, A., Tomlinson, B., Taheri, S. & Thomas, G.N. Rimonabant for the treatment of obesity. Recent Patents Cardiovasc. Drug Discov. 3, 187–193 (2008).

    Article  CAS  Google Scholar 

  38. Jacob, W. et al. Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission. Genes Brain Behav. 8, 685–698 (2009).

    Article  CAS  Google Scholar 

  39. Steiner, M.A. et al. Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. Pharmacogenomics J. 8, 196–208 (2008).

    Article  CAS  Google Scholar 

  40. Steiner, M.A., Marsicano, G., Wotjak, C.T. & Lutz, B. Conditional cannabinoid receptor type 1 mutants reveal neuron subpopulation-specific effects on behavioral and neuroendocrine stress responses. Psychoneuroendocrinology 33, 1165–1170 (2008).

    Article  CAS  Google Scholar 

  41. Liperoti, R., Landi, F., Fusco, O., Bernabei, R. & Onder, G. Omega-3 polyunsaturated fatty acids and depression: a review of the evidence. Curr. Pharm. Des. 15, 4165–4172 (2009).

    Article  CAS  Google Scholar 

  42. Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  43. Morrison, W.R. & Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5, 600–608 (1964).

    CAS  PubMed  Google Scholar 

  44. Kasanetz, F. & Manzoni, O.J. Maturation of excitatory synaptic transmission of the rat nucleus accumbens from juvenile to adult. J. Neurophysiol. 101, 2516–2527 (2009).

    Article  CAS  Google Scholar 

  45. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  Google Scholar 

  46. De Marchi, N. et al. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2, 5 (2003).

    Article  Google Scholar 

  47. Matias, I. et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J. Clin. Endocrinol. Metab. 91, 3171–3180 (2006).

    Article  CAS  Google Scholar 

  48. Richardson, D., Ortori, C.A., Chapman, V., Kendall, D.A. & Barrett, D.A. Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry. Anal. Biochem. 360, 216–226 (2007).

    Article  CAS  Google Scholar 

  49. Kingsley, P.J. & Marnett, L.J. LC-MS-MS analysis of neutral eicosanoids. Methods Enzymol. 433, 91–112 (2007).

    Article  CAS  Google Scholar 

  50. Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank O. Lassalle for helping with illustrations, P. Chavis and M. Darnaudéry for helpful discussions, P. Birac and C. Tridon for taking care of the mice and S. Grégoire for technical help. This work was supported by INSERM (O.J.M.), Institut National de la Recherche Agronomique (S.L.), Région Aquitaine (O.J.M. and S.L.), Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) and the Spanish Ministry of Health (FIS 070628, ISCIII, C.M.M., R.R.P. and S.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.L. performed the electrophysiology experiments, conducted the data analyses and contributed to the design of the experiments. T.L and A.D. performed the behavioral experiments, conducted the data analyses and contributed to the design of the experiments. S.M. performed the cannabinoid biochemical experiments, conducted the data analyses and contributed to the design of the experiments. M.S. participated in the electrophysiology experiments. R.R.-P. and C.M. participated in the cannabinoid biochemical experiments. I.M. performed the endocannabinoid measurements and conducted the data analyses. V.D.S. performed the western blot experiments and conducted the data analyses. V.F.L. participated in the behavioral experiments. L.B. performed the lipid biochemistry experiments and conducted the data analyses. S.L. and O.J.M. equally supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Sophie Layé or Olivier J Manzoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafourcade, M., Larrieu, T., Mato, S. et al. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 14, 345–350 (2011). https://doi.org/10.1038/nn.2736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing