Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease

Abstract

Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration–dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of α1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Blocking of CXCR1 impairs IL-8–mediated antibacterial functions of neutrophils.
Figure 2: CXCR1 expression on airway neutrophils is associated with bacterial-killing capacity and free elastase in individuals with chronic neutrophilic lung diseases.
Figure 3: Stratification of subjects with cystic fibrosis (CF).
Figure 4: Serine proteases cleave CXCR1 and release soluble CXCR1 fragments.
Figure 5: Soluble CXCR1 fragments induce cytokine production via TLR2.
Figure 6: α1-antitrypsin inhalation in subjects with cystic fibrosis (CF).

Similar content being viewed by others

References

  1. Holmes, W.E., Lee, J., Kuang, W.J., Rice, G.C. & Wood, W.I. Structure and functional expression of a human interleukin-8 receptor. Science 253, 1278–1280 (1991).

    Article  CAS  Google Scholar 

  2. Murphy, P.M. & Tiffany, H.L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253, 1280–1283 (1991).

    Article  CAS  Google Scholar 

  3. Baggiolini, M. Chemokines in pathology and medicine. J. Intern. Med. 250, 91–104 (2001).

    Article  CAS  Google Scholar 

  4. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182 (2006).

    Article  CAS  Google Scholar 

  5. Schumacher, C., Clark-Lewis, I., Baggiolini, M. & Moser, B. High- and low-affinity binding of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Proc. Natl. Acad. Sci. USA 89, 10542–10546 (1992).

    Article  CAS  Google Scholar 

  6. Wuyts, A. et al. Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial cell–derived neutrophil attractant-78. Eur. J. Biochem. 255, 67–73 (1998).

    Article  CAS  Google Scholar 

  7. Samanta, A.K., Oppenheim, J.J. & Matsushima, K. Interleukin-8 (monocyte-derived neutrophil chemotactic factor) dynamically regulates its own receptor expression on human neutrophils. J. Biol. Chem. 265, 183–189 (1990).

    CAS  PubMed  Google Scholar 

  8. Chuntharapai, A. & Kim, K.J. Regulation of the expression of IL-8 receptor A/B by Il-8—possible functions of each receptor. J. Immunol. 155, 2587–2594 (1995).

    CAS  PubMed  Google Scholar 

  9. Richardson, R.M. et al. Regulation of human interleukin-8 receptor A: identification of a phosphorylation site involved in modulating receptor functions. Biochemistry 34, 14193–14201 (1995).

    Article  CAS  Google Scholar 

  10. Richardson, R.M., Pridgen, B.C., Haribabu, B., Ali, H. & Snyderman, R. Differential cross-regulation of the human chemokine receptors CXCR1 and CXCR2—evidence for time-dependent signal generation. J. Biol. Chem. 273, 23830–23836 (1998).

    Article  CAS  Google Scholar 

  11. Richardson, R.M., Ali, H., Pridgen, B.C., Haribabu, B. & Snyderman, R. Multiple signaling pathways of human interleukin-8 receptor A. Independent regulation by phosphorylation. J. Biol. Chem. 273, 10690–10695 (1998).

    Article  CAS  Google Scholar 

  12. Barlic, J. β-arrestins regulate interleukin-8–induced CXCR1 internalization. J. Biol. Chem. 274, 16287–16294 (1999).

    Article  CAS  Google Scholar 

  13. Baggiolini, M., Walz, A. & Kunkel, S.L. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest. 84, 1045–1049 (1989).

    Article  CAS  Google Scholar 

  14. Peveri, P., Walz, A., Dewald, B. & Baggiolini, M. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J. Exp. Med. 167, 1547–1559 (1988).

    Article  CAS  Google Scholar 

  15. Djeu, J.Y., Matsushima, K., Oppenheim, J.J., Shiotsuki, K. & Blanchard, D.K. Functional activation of human neutrophils by recombinant monocyte-derived neutrophil chemotactic factor/IL-8. J. Immunol. 144, 2205–2210 (1990).

    CAS  PubMed  Google Scholar 

  16. Jones, S.A., Wolf, M., Qin, S.X., Mackay, C.R. & Baggiolini, M. Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc. Natl. Acad. Sci. USA 93, 6682–6686 (1996).

    Article  CAS  Google Scholar 

  17. L'Heureux, G.P., Bourgoin, S., Jean, N., McColl, S.R. & Naccache, P.H. Diverging signal-transduction pathways activated by interleukin-8 and related chemokines in human neutrophils—interleukin-8, but not Nap-2 or Gro-α, stimulates phospholipase-D activity. Blood 85, 522–531 (1995).

    CAS  PubMed  Google Scholar 

  18. Moepps, B., Nuesseler, E., Braun, M. & Gierschik, P. A homolog of the human chemokine receptor CXCR1 is expressed in the mouse. Mol. Immunol. 43, 897–914 (2006).

    Article  CAS  Google Scholar 

  19. Baggiolini, M., Dewald, B. & Moser, B. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv. Immunol. 55, 97–179 (1994).

    Article  CAS  Google Scholar 

  20. Bonfield, T.L. et al. Inflammatory cytokines in cystic-fibrosis lungs. Am. J. Respir. Crit. Care Med. 152, 2111–2118 (1995).

    Article  CAS  Google Scholar 

  21. Stockley, R.A. Neutrophils and the pathogenesis of COPD. Chest 121, 151S–155S (2002).

    Article  CAS  Google Scholar 

  22. Roos, D. & Winterbourn, C.C. Immunology—lethal weapons. Science 296, 669–671 (2002).

    Article  CAS  Google Scholar 

  23. Pease, J.E. & Sabroe, I. The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Am. J. Respir. Med. 1, 19–25 (2002).

    Article  CAS  Google Scholar 

  24. Konstan, M.W. & Berger, M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr. Pulmonol. 24, 137–142 (1997).

    Article  CAS  Google Scholar 

  25. Daniels, R.H., Finnen, M.J., Hill, M.E. & Lackie, J.M. Recombinant human monocyte IL-8 primes NADPH-oxidase and phospholipase A2 activation in human neutrophils. Immunology 75, 157–163 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Döring, G. The role of neutrophil elastase in chronic inflammation. Am. J. Respir. Crit. Care Med. 150, S114–117 (1994).

    Article  Google Scholar 

  27. Mayer-Hamblett, N. et al. Association between pulmonary function and sputum biomarkers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 175, 822–828 (2007).

    Article  Google Scholar 

  28. Allen, L. et al. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J. Immunol. 174, 3643–3649 (2005).

    Article  CAS  Google Scholar 

  29. Kobayashi, S.D. et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl. Acad. Sci. USA 100, 10948–10953 (2003).

    Article  CAS  Google Scholar 

  30. Sabroe, I., Jones, E.C., Whyte, M.K.B. & Dower, S.K. Regulation of human neutrophil chemokine receptor expression and function by activation of Toll-like receptors 2 and 4. Immunology 115, 90–98 (2005).

    Article  CAS  Google Scholar 

  31. Pham, C.T. Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 6, 541–550 (2006).

    Article  CAS  Google Scholar 

  32. Berger, M., Sorensen, R.U., Tosi, M.F., Dearborn, D.G. & Doring, G. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J. Clin. Invest. 84, 1302–1313 (1989).

    Article  CAS  Google Scholar 

  33. Tosi, M.F., Zakem, H. & Berger, M. Neutrophil elastase cleaves C3bi on opsonized Pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J. Clin. Invest. 86, 300–308 (1990).

    Article  CAS  Google Scholar 

  34. Vandivier, R.W. et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J. Clin. Invest. 109, 661–670 (2002).

    Article  CAS  Google Scholar 

  35. Taggart, C.C., Greene, C.M., Carroll, T.P., O'Neill, S.J. & Mcelvaney, N.G. Elastolytic proteases: inflammation resolution and dysregulation in chronic infective lung disease. Am. J. Respir. Crit. Care Med. 171, 1070–1076 (2005).

    Article  Google Scholar 

  36. Khandaker, M.H. et al. CXCR1 and CXCR2 are rapidly down-modulated by bacterial endotoxin through a unique agonist-independent, tyrosine kinase–dependent mechanism. J. Immunol. 161, 1930–1938 (1998).

    CAS  PubMed  Google Scholar 

  37. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  38. Khandaker, M.H. et al. Metalloproteinases are involved in lipopolysaccharide- and tumor necrosis factor-α–mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood 93, 2173–2185 (1999).

    CAS  PubMed  Google Scholar 

  39. Khan, T.Z. et al. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151, 1075–1082 (1995).

    CAS  PubMed  Google Scholar 

  40. Mall, M., Grubb, B.R., Harkema, J.R., O'Neal, W.K. & Boucher, R.C. Increased airway epithelial Na+ absorption produces cystic fibrosis–like lung disease in mice. Nat. Med. 10, 487–493 (2004).

    Article  CAS  Google Scholar 

  41. Frizzell, R.A. & Pilewski, J.M. Finally, mice with cystic fibrosis lung disease. Nat. Med. 10, 452–454 (2004).

    Article  CAS  Google Scholar 

  42. McElvaney, N.G. et al. Aerosol α1-antitrypsin treatment for cystic fibrosis. Lancet 337, 392–394 (1991).

    Article  CAS  Google Scholar 

  43. Stockley, R.A. Neutrophils and protease/antiprotease imbalance. Am. J. Respir. Crit. Care Med. 160, S49–S52 (1999).

    Article  CAS  Google Scholar 

  44. Tsang, K.W. et al. Sputum elastase in steady-state bronchiectasis. Chest 117, 420–426 (2000).

    Article  CAS  Google Scholar 

  45. Stockley, R.A. The role of proteinases in the pathogenesis of chronic bronchitis. Am. J. Respir. Crit. Care Med. 150, S109–113 (1994).

    Article  CAS  Google Scholar 

  46. Ordonez, C.L., Shaughnessy, T.E., Matthay, M.A. & Fahy, J.V. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: clinical and biologic significance. Am. J. Respir. Crit. Care Med. 161, 1185–1190 (2000).

    Article  CAS  Google Scholar 

  47. Wenzel, S.E. et al. Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am. J. Respir. Crit. Care Med. 156, 737–743 (1997).

    Article  CAS  Google Scholar 

  48. Pignatti, P. et al. Downmodulation of CXCL8/IL-8 receptors on neutrophils after recruitment in the airways. J. Allergy Clin. Immunol. 115, 88–94 (2005).

    Article  CAS  Google Scholar 

  49. Panina, P., Mariani, M. & D'Ambrosio, D. Chemokine receptors in chronic obstructive pulmonary disease (COPD). Curr. Drug Targets 7, 669–674 (2006).

    Article  CAS  Google Scholar 

  50. van Pelt, L.J. et al. Limitations on the use of dihydrorhodamine 123 for flow cytometric analysis of the neutrophil respiratory burst. J. Immunol. Methods 191, 187–196 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Remold-O'Donnell, M. Ennis, J. Elias, C. Sommerhoff, F. Ebel, A. Luster, M. Mall and B. Walzog for helpful discussions, and J. Miller for proofreading. This work is supported by the German Federal Ministry of Education and Research in the program BioFuture FKZ0311898 (C.R.), the German Society of Pediatric Pneumology (D.H.), Präventions-und Informationsnetzwerk Allergie/Asthma e.V. (D.H.) and the German Research Society DFG GR970-7.2 (M.G., M.W.).

Author information

Authors and Affiliations

Authors

Contributions

D.H. designed the main research concept, performed experiments and wrote the manuscript. A.A.R., D.R. and M.G. supervised the study, codesigned the research concept and wrote the manuscript; P.L. contributed to study design, performed statistical analyses and wrote the manuscript; D.R. provided funding and cosupervised the project.; P.H., V.M., C.R., M.W., B.K. and S.K.-E. performed experiments and/or provided scientific and technical knowledge.

Corresponding author

Correspondence to Dominik Hartl.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartl, D., Latzin, P., Hordijk, P. et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13, 1423–1430 (2007). https://doi.org/10.1038/nm1690

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1690

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing