Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A microRNA component of the p53 tumour suppressor network

Abstract

A global decrease in microRNA (miRNA) levels is often observed in human cancers1,2, indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wild-type and p53-deficient cells. Here we describe a family of miRNAs, miR-34a–c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of miR-34 is correlated with p53 status in MEFs.
Figure 2: Genes encoding miR-34 are direct targets of p53.
Figure 3: miR-34 family miRNAs mediate growth arrest in a variety of cell types.
Figure 4: miR-34 regulates a programme of cell cycle and DNA damage response genes.

Similar content being viewed by others

References

  1. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006)

    Article  CAS  Google Scholar 

  3. Levine, A. J., Hu, W. & Feng, Z. The p53 pathway: what questions remain to be explored? Cell Death Differ. 13, 1027–1036 (2006)

    Article  CAS  Google Scholar 

  4. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996)

    Article  CAS  Google Scholar 

  5. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991)

    Article  ADS  CAS  Google Scholar 

  6. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005)

    Article  CAS  Google Scholar 

  7. Spurgers, K. B. et al. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J. Biol. Chem. 281, 25134–25142 (2006)

    Article  CAS  Google Scholar 

  8. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  Google Scholar 

  9. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005)

    Article  Google Scholar 

  10. Fei, P. & El-Deiry, W. S. P53 and radiation responses. Oncogene 22, 5774–5783 (2003)

    Article  CAS  Google Scholar 

  11. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998)

    Article  CAS  Google Scholar 

  12. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000)

    Article  CAS  Google Scholar 

  13. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007)

    Article  CAS  Google Scholar 

  14. Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006)

    Article  CAS  Google Scholar 

  15. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  CAS  Google Scholar 

  17. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995)

    Article  CAS  Google Scholar 

  18. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995)

    Article  CAS  Google Scholar 

  21. Lohr, K., Moritz, C., Contente, A. & Dobbelstein, M. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem. 278, 32507–32516 (2003)

    Article  Google Scholar 

  22. Welch, C., Chen, Y. & Stallings, R. L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene advance online publication, doi:10.1038/sj.onc.1210293 (12 February 2007)

  23. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell 128, 459–475 (2007)

    Article  CAS  Google Scholar 

  25. Sutcliffe, J. E. & Brehm, A. Of flies and men; p53, a tumour suppressor. FEBS Lett. 567, 86–91 (2004)

    Article  CAS  Google Scholar 

  26. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006)

    Article  CAS  Google Scholar 

  27. Raymond, C. K., Roberts, B. S., Garrett-Engele, P., Lim, L. P. & Johnson, J. M. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11, 1737–1744 (2005)

    Article  CAS  Google Scholar 

  28. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003)

    Article  CAS  Google Scholar 

  29. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Hannon and Lowe laboratories and the Rosetta Biology group for helpful input; M. Zhang and J. Burchard for bioinformatic analysis; J. Guo, C. Raymond and K. Niemeyer for miRNA quantification; J. Schelter and M. Kibukawa for cell cycle analyses and gene expression profiling; R. Diaz, M. Mehaffey, F. Huynh and the Rosetta Gene Expression Laboratory for technical assistance; and R. Dickins, J. Kurland, M. McCurrach, K. Diggins, A. Chicas, B. Stillman and B. Vogelstein for providing reagents and protocols. L.H. is a Fellow of the Helen Hay Whitney Foundation and is supported by a K99 grant from the NCI. S.W.L. and G.J.H. are supported by a program project grant from the NCI and are investigators of the Howard Hughes Medical Institute. This work was also supported in part by a gift from K. W. Davis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele A. Cleary or Gregory J. Hannon.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S8, Supplementary Tables S1-S2, Supplementary Methods and additional references. (PDF 3172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., He, X., Lim, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007). https://doi.org/10.1038/nature05939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing