Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics in human disease and prospects for epigenetic therapy

Abstract

Epigenetic mechanisms, which involve DNA and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. The study of human disease has focused on genetic mechanisms, but disruption of the balance of epigenetic networks can cause several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. Great potential lies in the development of ‘epigenetic therapies’ — several inhibitors of enzymes controlling epigenetic modifications, specifically DNA methyltransferases and histone deacetylases, have shown promising anti-tumorigenic effects for some malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction between RNA, histone modification and DNA methylation in heritable silencing.
Figure 2: Mechanism of action of nucleoside analogue inhibitors.

Similar content being viewed by others

References

  1. Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    ADS  CAS  PubMed  Google Scholar 

  2. Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9–25 (1975).

    CAS  PubMed  Google Scholar 

  3. Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA 99, 3740–3745 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    CAS  PubMed  Google Scholar 

  5. Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298 (2002).

    CAS  PubMed  Google Scholar 

  6. Fischle, W., Wang, Y. & Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003).

    ADS  CAS  PubMed  Google Scholar 

  7. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    ADS  CAS  PubMed  Google Scholar 

  8. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    ADS  CAS  PubMed  Google Scholar 

  9. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    ADS  CAS  PubMed  Google Scholar 

  10. Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 21, 6842–6852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson, L., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr. Biol. 12, 1360–1367 (2002).

    CAS  PubMed  Google Scholar 

  12. Soppe, W. J. et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 21, 6549–6559 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tariq, M. et al. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc. Natl Acad. Sci. USA 100, 8823–8827 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    CAS  PubMed  Google Scholar 

  15. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).

    CAS  PubMed  Google Scholar 

  17. Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet. 24, 88–91 (2000).

    CAS  PubMed  Google Scholar 

  18. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    ADS  CAS  PubMed  Google Scholar 

  19. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    ADS  CAS  PubMed  Google Scholar 

  20. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    ADS  CAS  PubMed  Google Scholar 

  21. Rougeulle, C. & Heard, E. Antisense RNA in imprinting: spreading silence through Air. Trends Genet. 18, 434–437 (2002).

    CAS  PubMed  Google Scholar 

  22. Panning, B. & Jaenisch, R. RNA and the epigenetic regulation of X chromosome inactivation. Cell 93, 305–308 (1998).

    CAS  PubMed  Google Scholar 

  23. Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genet. 203, 157–165 (2003).

    Google Scholar 

  24. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Google Scholar 

  25. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    CAS  PubMed  Google Scholar 

  26. Klose, R. & Bird, A. Molecular biology. MeCP2 repression goes nonglobal. Science 302, 793–795 (2003).

    CAS  PubMed  Google Scholar 

  27. Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    ADS  CAS  PubMed  Google Scholar 

  28. Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893 (2003).

    ADS  CAS  PubMed  Google Scholar 

  29. Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 808–811 (1997).

    CAS  PubMed  Google Scholar 

  30. Gazzoli, I., Loda, M., Garber, J., Syngal, S. & Kolodner, R. D. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res. 62, 3925–3928 (2002).

    CAS  PubMed  Google Scholar 

  31. Suter, C. M., Martin, D. I. & Ward, R. L. Germline epimutation of MLH1 in individuals with multiple cancers. Nature Genet. advance online publication 4 April 2004 (doi:10.1038/ng1342).

  32. Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet. 21, 163–167 (1999).

    CAS  PubMed  Google Scholar 

  33. Hake, S. B., Xiao, A. & Allis, C. D. Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br. J. Cancer 90, 761–769 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998).

    ADS  CAS  PubMed  Google Scholar 

  35. Jones, L. K. & Saha, V. Chromatin modification, leukaemia and implications for therapy. Br. J. Haematol. 118, 714–727 (2002).

    PubMed  Google Scholar 

  36. Roberts, C. W. & Orkin, S. H. The SWI/SNF complex — chromatin and cancer. Nature Rev. Cancer 4, 133–142 (2004).

    CAS  Google Scholar 

  37. Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science 220, 1055–1057 (1983).

    ADS  CAS  PubMed  Google Scholar 

  38. Richardson, B. C. Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J. Nutr. 132, 2401S–2405S (2002).

    CAS  PubMed  Google Scholar 

  39. Issa, J. P. CpG-island methylation in aging and cancer. Curr. Top. Microbiol. Immunol. 249, 101–118 (2000).

    CAS  PubMed  Google Scholar 

  40. Beaudet, A. L. & Jiang, Y. H. A rheostat model for a rapid and reversible form of imprinting-dependent evolution. Am. J. Hum. Genet. 70, 1389–1397 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).

    CAS  PubMed  Google Scholar 

  42. Sorm, F., Piskala, A., Cihak, A. & Vesely, J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20, 202–203 (1964).

    CAS  PubMed  Google Scholar 

  43. Constantinides, P. G., Jones, P. A. & Gevers, W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267, 364–366 (1977).

    ADS  CAS  PubMed  Google Scholar 

  44. Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93 (1980).

    CAS  PubMed  Google Scholar 

  45. Zhou, L. et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591–599 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Michalowsky, L. A. & Jones, P. A. Differential nuclear protein binding to 5-azacytosine-containing DNA as a potential mechanism for 5-aza-2′-deoxycytidine resistance. Mol. Cell. Biol. 7, 3076–3083 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Issa, J. P. et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103, 1635–1640 (2004).

    CAS  PubMed  Google Scholar 

  48. Saunthararajah, Y. et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 102, 3865–3870 (2003).

    CAS  PubMed  Google Scholar 

  49. Cheng, J. C. et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst. 95, 399–409 (2003).

    CAS  PubMed  Google Scholar 

  50. Lin, X. et al. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res. 61, 8611–8616 (2001).

    CAS  PubMed  Google Scholar 

  51. Fang, M. Z. et al. Tea polyphenol (–)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563–7570 (2003).

    CAS  PubMed  Google Scholar 

  52. Pina, I. C. et al. Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chem. 68, 3866–3873 (2003).

    CAS  PubMed  Google Scholar 

  53. Yan, L. et al. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-α (ER) in ER-negative human breast cancer cell lines. Cancer Biol. Ther. 2, 552–556 (2003).

    CAS  PubMed  Google Scholar 

  54. Xiao, H., Hasegawa, T. & Isobe, K. Both Sp1 and Sp3 are responsible for p21waf1 promoter activity induced by histone deacetylase inhibitor in NIH3T3 cells. J. Cell. Biochem. 73, 291–302 (1999).

    CAS  PubMed  Google Scholar 

  55. Marks, P. A., Miller, T. & Richon, V. M. Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351 (2003).

    CAS  PubMed  Google Scholar 

  56. Jahangeer, S., Elliott, R. M. & Henneberry, R. C. β-Adrenergic receptor induction in HeLa cells: synergistic effect of 5-azacytidine and butyrate. Biochem. Biophys. Res. Commun. 108, 1434–1440 (1982).

    CAS  PubMed  Google Scholar 

  57. Ginder, G. D., Whitters, M. J. & Pohlman, J. K. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. Natl Acad. Sci. USA 81, 3954–3958 (1984).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet. 21, 103–107 (1999).

    CAS  PubMed  Google Scholar 

  59. Suzuki, H. et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genet. 31, 141–149 (2002).

    CAS  PubMed  Google Scholar 

  60. Yamashita, K. et al. Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2, 485–495 (2002).

    CAS  PubMed  Google Scholar 

  61. Belinsky, S. A. et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res. 63, 7089–7093 (2003).

    CAS  PubMed  Google Scholar 

  62. Claus, R. & Lubbert, M. Epigenetic targets in hematopoietic malignancies. Oncogene 22, 6489–6496 (2003).

    CAS  PubMed  Google Scholar 

  63. Plumb, J. A., Strathdee, G., Sludden, J., Kaye, S. B. & Brown, R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60, 6039–6044 (2000).

    CAS  PubMed  Google Scholar 

  64. Karpf, A. R. & Jones, D. A. Reactivating the expression of methylation silenced genes in human cancer. Oncogene 21, 5496–5503 (2002).

    CAS  PubMed  Google Scholar 

  65. Weber, J. et al. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res. 54, 1766–1771 (1994).

    CAS  PubMed  Google Scholar 

  66. Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer 3, 253–266 (2003).

    CAS  Google Scholar 

  67. Liang, G., Gonzales, F. A., Jones, P. A., Orntoft, T. F. & Thykjaer, T. Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res. 62, 961–966 (2002).

    CAS  PubMed  Google Scholar 

  68. Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Reactivation of an inactive X human chromosome: evidence for X inactivation by DNA methylation. Science 211, 393–396 (1981).

    ADS  CAS  PubMed  Google Scholar 

  69. Wolf, S. F. & Migeon, B. R. Studies of X chromosome DNA methylation in normal human cells. Nature 295, 667–671 (1982).

    ADS  CAS  PubMed  Google Scholar 

  70. Eversole-Cire, P. et al. Activation of an imprinted Igf 2 gene in mouse somatic cell cultures. Mol. Cell. Biol. 13, 4928–4938 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jackson-Grusby, L., Laird, P. W., Magge, S. N., Moeller, B. J. & Jaenisch, R. Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl Acad. Sci. USA 94, 4681–4685 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carr, B. I., Rahbar, S., Asmeron, Y., Riggs, A. & Winberg, C. D. Carcinogenicity and haemoglobin synthesis induction by cytidine analogues. Br. J. Cancer 57, 395–402 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sato, N. et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 63, 4158–4166 (2003).

    CAS  PubMed  Google Scholar 

  74. Yang, A. S., Estecio, M. R., Garcia-Manero, G., Kantarjian, H. M. & Issa, J. P. Comment on ‘Chromosomal instability and tumors promoted by DNA hypomethylation’ and ‘Induction of tumors in nice by genomic hypomethylation’. Science 302, 1153 (2003).

    CAS  PubMed  Google Scholar 

  75. Lubbert, M. et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br. J. Haematol. 114, 349–357 (2001).

    CAS  PubMed  Google Scholar 

  76. Karpf, A. R., Moore, B. C., Ririe, T. O. & Jones, D. A. Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol. Pharmacol. 59, 751–757 (2001).

    CAS  PubMed  Google Scholar 

  77. Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet. 27, 31–39 (2001).

    CAS  PubMed  Google Scholar 

  78. Peterson, E. J., Bogler, O. & Taylor, S. M. p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer Res. 63, 6579–6582 (2003).

    CAS  PubMed  Google Scholar 

  79. Juttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA 91, 11797–11801 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Esteller, M., Corn, P. G., Baylin, S. B. & Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225–3229 (2001).

    CAS  PubMed  Google Scholar 

  81. Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299, 1753–1755 (2003).

    ADS  CAS  PubMed  Google Scholar 

  82. Gibbons, R. J. & Higgs, D. R. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 97, 204–212 (2000).

    CAS  PubMed  Google Scholar 

  83. Oostra, B. A. & Willemsen, R. The X chromosome and fragile X mental retardation. Cytogenet. Genome Res. 99, 257–264 (2002).

    CAS  PubMed  Google Scholar 

  84. Ehrlich, M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol. 109, 17–28 (2003).

    CAS  PubMed  Google Scholar 

  85. Nicholls, R. D., Saitoh, S. & Horsthemke, B. Imprinting in Prader–Willi and Angelman syndromes. Trends Genet. 14, 194–200 (1998).

    CAS  PubMed  Google Scholar 

  86. Goldstone, A. P. Prader–Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol. Metab. 15, 12–20 (2004).

    CAS  PubMed  Google Scholar 

  87. Maher, E. R. & Reik, W. Beckwith–Wiedemann syndrome: imprinting in clusters revisited. J. Clin. Invest. 105, 247–252 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nature Rev. Cancer 4, 143–153 (2004).

    CAS  Google Scholar 

  89. Soejima, H. et al. Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer. Oncogene published online 8 March 2004 (doi:10.1038/sj.onc.1207576).

  90. Ausio, J., Levin, D. B., De Amorim, G. V., Bakker, S. & Macleod, P. M. Syndromes of disordered chromatin remodeling. Clin. Genet. 64, 83–95 (2003).

    CAS  PubMed  Google Scholar 

  91. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    CAS  PubMed  Google Scholar 

  92. Nguyen, C. T., Gonzales, F. A. & Jones, P. A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 29, 4598–4606 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3, 89–95 (2003).

    CAS  PubMed  Google Scholar 

  94. El-Osta, A. & Wolffe, A. P. DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr. 9, 63–75 (2000).

    CAS  PubMed  Google Scholar 

  95. Nguyen, C. T. et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res. 62, 6456–6461 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Nguyen for his help with the figures, and A. Yang and J. Rice for critical reading of the manuscript. This work was supported by the National Cancer Institute and the Max Kade Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

P.A.J. is a shareholder and consultant for Epigenomics AG and a consultant for SuperGen Inc., which is developing decitabine as a cancer treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egger, G., Liang, G., Aparicio, A. et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004). https://doi.org/10.1038/nature02625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing