Skip to main content
Log in

A Conceptual Framework for Adaptive Preventive Interventions

  • Published:
Prevention Science Aims and scope Submit manuscript

Abstract

Recently, adaptive interventions have emerged as a new perspective on prevention and treatment. Adaptive interventions resemble clinical practice in that different dosages of certain prevention or treatment components are assigned to different individuals, and/or within individuals across time, with dosage varying in response to the intervention needs of individuals. To determine intervention need and thus assign dosage, adaptive interventions use prespecified decision rules based on each participant's values on key characteristics, called tailoring variables. In this paper, we offer a conceptual framework for adaptive interventions, discuss principles underlying the design and evaluation of such interventions, and review some areas where additional research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bather, J. A. (2000). Decision theory: An introduction to dynamic programming and sequential decisions. New York: Wiley.

    Google Scholar 

  • Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming.Belmont, MA: Athena Scientific.

    Google Scholar 

  • Bierman, K. L., Nix, R. L., Maples, J. J., Murphy, S. A., & Conduct Problems Prevention Research Group. (2004). Evaluating the use of clinical judgment in the context of an adaptive intervention design: The Fast Track Prevention Program.Manuscript submitted for publication.

  • Borhani, N.O., Applegate, W.B., Cutler, J.A., Davis, B. R., Furberg, C. D., Lakatos, E., Page, L., Perry, H. M., Smith, W. M., & Probstfield, J. L. (1991). Systolic hypertension in the elderly program (SHEP). Part 1: Rationale and design. Hypertension, 17(Suppl II), 2–15.

    Google Scholar 

  • Breslin, F., Sobell, M. B., Sobell, L. C., Buchan, G., & Cunningham, J. A. (1997). Toward a stepped care approach to treating problem drinkers: The predictive utility of within-treatment variables and therapist prognostic ratings. Addiction, 92 ,1479–1489.

    Article  PubMed  Google Scholar 

  • Breslin, F., Sobell, M. B., Sobell, L. C., Cunningham, J. A., Sdao-Jarvie, K., & Borsoi, D. (1999). Problem drinkers: Evaluation of a stepped-care approach. Journal of Substance Abuse, 10 ,217–232.

    Article  Google Scholar 

  • Brooner, R. K., & Kidorf, M. (2002). Using behavioral reinforcement to improve methadone treatment participation. Science and Practice Prespectives, 1(1), 38–46.

    Google Scholar 

  • Collins, L. M., Graham, J. W., & Flaherty, B. P. (1998). An alternative framework for defining mediation. Multivariate Behavioral Research, 33 ,295–312.

    Google Scholar 

  • Conduct Problems Prevention Research Group. (1992).A developmental and clinical model for the prevention of conduct disorders: TheFastTrack Program. Development and Psychopathology, 4 ,509–528.

    Google Scholar 

  • Conduct Problems Prevention Research Group. (1999a). Initial impact of the Fast Track prevention trial for conduct problems: I. The high-risk sample. Journal of Consulting and Clinical Psychology, 67 ,631–647.

    Google Scholar 

  • Conduct Problems Prevention Research Group. (1999b). Initial impact of the Fast Track prevention trial for conduct problems: II. Classroom effects. Journal of Consulting and Clinical Psychology, 67 ,648–657.

    Google Scholar 

  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic networks and expert systems. New York: Springer.

    Google Scholar 

  • Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 243 ,1668–1674.

    PubMed  Google Scholar 

  • Dishion, T. J., & Kavanagh, K. (2000). A multilevel approach to family-centered prevention in schools. Addictive Behaviors, 25, 899–911.

    PubMed  Google Scholar 

  • Flay, B.R. (1986). Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs. Preventive Medicine, 15 ,451–474.

    PubMed  Google Scholar 

  • Kenny, D. A, Kashy, D. A., & Bolger, N. (1998). Data analysis in social psychology. In D. T. Gilbert & S. T. Fiske (Eds.), The handbook of social psychology (Vol. 2, 4th ed., pp. 233–265). Boston, MA McGraw-Hill.

    Google Scholar 

  • Kreuter, M. W., & Strecher, V. J. (1996). Do tailored behavior change messages enhance the effectiveness of health risk appraisal? Results from a randomized trial. Health Education Research, 11 ,97–105.

    PubMed  Google Scholar 

  • Kreuter, M. W., Strecher, V. J., & Glassman, B. (1999). One size does not fit all: the case for tailoring print materials. Annals of Behavioral Medicine, 21 ,276–283.

    PubMed  Google Scholar 

  • Lavori, P. W., & Dawson, R. (1998). Developing and comparing treatment strategies: An annotated portfolio of designs. Psychopharmacology Bulletin, 34 ,13–18.

    PubMed  Google Scholar 

  • Lavori, P.W., Dawson, R., & Rush, A. J. (2000). Flexible treatment strategies in chronic disease: Clinical and research implications. Biological Psychiatry, 48 ,605–614.

    Article  PubMed  Google Scholar 

  • McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Murphy, S. A. (2003). Optimal dynamic treatment regimes (with discussion). Journal of the Royal Statistical Society, Series B, 65 ,331–366.

    Google Scholar 

  • Murphy, S. A., van der Laan, M. J., Robins, J. M., & Conduct Problems Prevention Research Group. (2001). Marginal mean models for dynamic regimes. Journal of the American Statistical Association, 96 ,1410–1423.

    Article  Google Scholar 

  • Owens, D. K., Shachter, R. D., & Nease, R. F. (1997). Representation and analysis of medical decision problems with influence diagrams. Medical Decision Making, 17 ,241–262.

    PubMed  Google Scholar 

  • Prochaska, J. O., Velicer, W. F., Fava, J. L., Rossi, J. S., & Tsoh, J.Y. (2001). Evaluating a population-based recruitment approach and a stage-based expert system intervention for smoking cessation. Addictive Behaviors, 26 ,583–602.

    Article  PubMed  Google Scholar 

  • Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods-application to control of the healthy worker survivor effect. Computers and Mathematics with Applications, 14 ,1393–1512.

    Google Scholar 

  • Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In L. Sechrest, H. Freeman, & A. Mulley (Eds.), Health service research methodology: A focus on AIDS (pp. 113–159). NCHSR, U.S. Public Health Service, Washington, DC.

    Google Scholar 

  • Robins, J. M. (1993). Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers. Proceedings of the Biopharmaceutical Section, American Statistical Association, 24–33.

  • Robins, J. M. (1997). Causal inference from complex longitudinal data. In M. Berkane (Ed.), Latent variable modeling and applications to causality: Lecture notes in statistics (pp. 69–117). New York: Springer.

    Google Scholar 

  • Schulte, D., Kunzel, R. l., Pepping, G., & Schulte-Bahrenberg, T. (1992). Tailor-made versus standardized therapy of phobic patients. Advances in Behavior Research and Therapy, 14 ,67–92.

    Google Scholar 

  • Shachter, R. D. (1986). Evaluating influence diagrams. Operations Research, 34 ,871–882.

    Google Scholar 

  • Sobel, M. B., & Sobell, L. C. (1999). Stepped care for alcohol problems: An efficient method for planning and delivering clinical services. In: J. A. Tucker, D. M. Donovan, & G. A. Marlatt (Eds.), Changing addictive behavior: Bridging clinical and public health strategies (pp. 331–343). New York: Guilford Press.

    Google Scholar 

  • Sobel, M. B., & Sobell, L. C. (2000). Stepped care as a heuristic approach to the treatment of alcohol problems. Journal of Consulting and Clinical Psychology, 68 ,573–579.

    Article  PubMed  Google Scholar 

  • Weissberg, R.P., & Greenberg, M.T. (1998). Prevention science and collaborative community action research: Combining the best from both perspectives. Journal of Mental Health, 7 ,479–492.

    Article  Google Scholar 

  • Winship, C., & Morgan, S. L. (1999). The estimation of causal effects from observational longitudinal data. Annual Review of Sociology, 25 ,659–706.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, L.M., Murphy, S.A. & Bierman, K.L. A Conceptual Framework for Adaptive Preventive Interventions. Prev Sci 5, 185–196 (2004). https://doi.org/10.1023/B:PREV.0000037641.26017.00

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PREV.0000037641.26017.00

Navigation