Skip to main content

Advertisement

Log in

Evaluation of Longitudinal Lymphatic Function Changes upon Injury in the Mouse Tail with Photodynamic Therapy

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The lymphatic system is an essential but often understudied component of the circulatory system in comparison with its cardiovascular counterpart. Such disparity could often be explained by the difficulty in imaging lymphatics and the specialized microsurgical skills that are often required for lymphatic injury models. Recently, it has been shown that verteporfin, a photosensitive drug used for photodynamic therapy (PDT) to ablate the blood vessels, provides a similar effect on lymphatic vessels. Here, we seek to administer verteporfin and perform a modified form of PDT on collecting lymphatics in the mouse tail, a commonly used location for the study of lymphatic disorders, and examine lymphatic remodeling, contractility, and transport in response to the procedure.

Methods

Mice collecting lymphatics in the tail were injured by PDT through an intradermal injection of verteporfin in the distal tip of the tail followed by light activation on the proximal portion of the tail downstream of the injection site. Lymphatic function was evaluated using a near-infrared (NIR) imaging system weekly for up to 28 days after injury.

Results

PDT resulted in a loss in lymphatic function contractile frequency that persisted for up to 7 days after injury. Packet transport and packet amplitude, measurements reflective of the strength of contraction, were significantly reduced 14 days after injury. The lymphatics showed a delayed increase in lymphatic leakage at 7 days that persisted until the study endpoint on day 28.

Conclusion

This technique provides an easy-to-use method for injuring lymphatics to understand their remodeling response to injury by PDT as well as potentially for screening therapeutics that seek to normalize lymphatic permeability or contractile function after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abrahamse, H., and M. R. Hamblin. New photosensitizers for photodynamic therapy. Biochem. J. 473:347–364, 2016. https://doi.org/10.1042/BJ20150942.

    Article  CAS  PubMed  Google Scholar 

  2. Baluk, P., J. Fuxe, H. Hashizume, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204:2349–2362, 2007. https://doi.org/10.1084/jem.20062596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bausch & Lomb Incorporated. VISUDYNE (Package Insert). Bausch & Lomb Incorporated, 2000. https://www.bausch.com/globalassets/pdf/packageinserts/pharma/visudyne-prescribing-information.pdf.

  4. Bernard, F. C., J. Kaiser, S. K. Raval, et al. Multichromatic near-infrared imaging to assess interstitial lymphatic and venous uptake in vivo. J. Biomed. Opt. 2021. https://doi.org/10.1117/1.jbo.26.12.126001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bouta, E. M., C. Blatter, T. A. Ruggieri, et al. Lymphatic function measurements influenced by contrast agent volume and body position. JCI Insights. 2018. https://doi.org/10.1172/jci.insight.96591.

    Article  Google Scholar 

  6. Breslin, J. W., Y. Yang, J. P. Scallan, et al. Lymphatic vessel network structure and physiology. Compr. Physiol. 9:207–299, 2019. https://doi.org/10.1002/cphy.c180015.

    Article  Google Scholar 

  7. Brodowska, K., A. Al-Moujahed, A. Marmalidou, et al. The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human retinoblastoma cell growth in vitro without light activation. Exp. Eye Res. 124:67–73, 2014. https://doi.org/10.1016/j.exer.2014.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho, H., J. Kim, J. H. Ahn, et al. YAP and TAZ negatively regulate Prox1 during developmental and pathologic lymphangiogenesis. Circ. Res. 124:225–242, 2018. https://doi.org/10.1161/CIRCRESAHA.118.313707.

    Article  CAS  Google Scholar 

  9. Chong, C., F. Scholkmann, S. B. Bachmann, et al. In vivo visualization and quantification of collecting lymphatic vessel contractility using near-infrared imaging. Sci. Rep. 6:22930, 2016. https://doi.org/10.1038/srep22930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cribb, M. T., L. F. Sestito, S. G. Rockson, et al. The kinetics of lymphatic dysfunction and leukocyte expansion in the draining lymph node during LTB4 antagonism in a mouse model of lymphedema. Int. J. Mol. Sci. 22:4455, 2021. https://doi.org/10.3390/ijms22094455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dixon, J. B. Lymphatic lipid transport: sewer or subway? Trends Endocrinol. Metab. 21:480–487, 2010. https://doi.org/10.1016/j.tem.2010.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doan, T. N., F. C. Bernard, J. M. McKinney, et al. Endothelin-1 inhibits size dependent lymphatic clearance of PEG-based conjugates after intra-articular injection into the rat knee. Acta Biomater. 93:270–281, 2019. https://doi.org/10.1016/j.actbio.2019.04.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dolmans, D. E. J. G. J., D. Fukumura, and R. K. Jain. Photodynamic therapy for cancer. Nat. Rev. Cancer. 3:380–387, 2003. https://doi.org/10.1038/nrc1071.

    Article  CAS  PubMed  Google Scholar 

  14. Du, H.-T., L.-L. Du, X.-L. Tang, et al. Blockade of MMP-2 and MMP-9 inhibits corneal lymphangiogenesis. Graefe’s Arch. Clin. Exp. Ophthalmol. 255:1573–1579, 2017. https://doi.org/10.1007/s00417-017-3651-8.

    Article  CAS  Google Scholar 

  15. Dylke, E. S., M. F. McEntee, G. P. Schembri, et al. Reliability of a radiological grading system for dermal backflow in lymphoscintigraphy imaging. Acad Radiol. 20:758–763, 2013. https://doi.org/10.1016/j.acra.2013.01.018.

    Article  PubMed  Google Scholar 

  16. Gashev, A. A. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 540:1023–1037, 2002. https://doi.org/10.1113/jphysiol.2002.016642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gashev, A. A. Physiologic aspects of lymphatic contractile function. Ann. N. Y. Acad. Sci. 979:178–187, 2002. https://doi.org/10.1111/j.1749-6632.2002.tb04878.x.

    Article  Google Scholar 

  18. Karaçavuş, S., Y. K. Yılmaz, and H. Ekim. Clinical significance of lymphoscintigraphy findings in the evaluation of lower extremity lymphedema. Mol. Imaging Radionucl. Ther. 24:80–84, 2015. https://doi.org/10.4274/mirt.58077.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kawashima, Y., M. Sugimura, Y.-C. Hwang, and N. Kudo. The lymph system in mice. Jpn. J. Vet. Res. 1964. https://doi.org/10.14943/jjvr.12.4.69.

    Article  Google Scholar 

  20. Kilarski, W. W., A. Muchowicz, M. Wachowska, et al. Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. Angiogenesis. 17:347–357, 2014. https://doi.org/10.1007/s10456-013-9365-6.

    Article  CAS  PubMed  Google Scholar 

  21. Koller, A., R. Mizuno, and G. Kaley. Flow reduces the amplitude and increases the frequency of lymphatic vasomotion: role of endothelial prostanoids. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277:R1683–R1689, 1999. https://doi.org/10.1152/ajpregu.1999.277.6.R1683.

    Article  CAS  Google Scholar 

  22. Kornuta, J. A., Z. Nepiyushchikh, O. Y. Gasheva, et al. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R1122–R1134, 2015. https://doi.org/10.1152/ajpregu.00342.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kraft, J. C., P. M. Treuting, and R. J. Y. Ho. Indocyanine green nanoparticles undergo selective lymphatic uptake, distribution and retention and enable detailed mapping of lymph vessels, nodes and abnormalities. J. Drug Target. 26:494–504, 2018. https://doi.org/10.1080/1061186X.2018.1433681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leman, J. A., and C. A. Morton. Photodynamic therapy: applications in dermatology. Expert Opin. Biol. Ther. 2:45–53, 2002. https://doi.org/10.1517/14712598.2.1.45.

    Article  CAS  PubMed  Google Scholar 

  25. Liao, S., G. Cheng, D. A. Conner, et al. Impaired lymphatic contraction associated with immunosuppression. Proc. Natl Acad. Sci. USA. 113:E5992, 2016. https://doi.org/10.1073/pnas.1614689113.

    Article  CAS  Google Scholar 

  26. Lim, H. Y., C. H. Thiam, K. P. Yeo, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 17:671–684, 2013. https://doi.org/10.1016/j.cmet.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  27. Liu-Chittenden, Y., B. Huang, J. S. Shim, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26:1300–1305, 2012. https://doi.org/10.1101/gad.192856.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mendez, U., E. M. Stroup, L. L. Lynch, et al. A chronic and latent lymphatic insufficiency follows recovery from acute lymphedema in the rat foreleg. Am. J. Physiol. Heart Circ. Physiol. 303:H1107–H1113, 2012. https://doi.org/10.1152/ajpheart.00522.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muchowicz, A., M. Wachowska, J. Stachura, et al. Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. Eur. J. Cancer. 83:19–27, 2017. https://doi.org/10.1016/j.ejca.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  30. Mukherjee, A., J. Hooks, Z. Nepiyushchikh, and J. B. Dixon. Entrainment of lymphatic contraction to oscillatory flow. Sci. Rep. 9:5840, 2019. https://doi.org/10.1038/s41598-019-42142-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nelson, T. S., R. E. Akin, M. J. Weiler, et al. Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306:R281–R290, 2014. https://doi.org/10.1152/ajpregu.00369.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nelson, T. S. The functional and remodeling response of collecting lymphatic vessels to disruption of lymphatic drainage pathways. Doctoral Dissertation, Georgia Institute of Technology, Georgia Tech Theses and Dissertations, 2018.

  33. Novartis Ophthalmics. Visudyne (Verteporfin for Injection). Professional Product Labeling. NDA 21-119/S-001. Novartis Ophthalmics, 2001, pp. 3–12.

  34. Proulx, S. T., P. Luciani, A. Christiansen, et al. Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials. 34:5128–5137, 2013. https://doi.org/10.1016/j.biomaterials.2013.03.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Randolph, G. J., V. Angeli, and M. A. Swartz. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5:617–628, 2005. https://doi.org/10.1038/nri1670.

    Article  CAS  PubMed  Google Scholar 

  36. Rutkowski, J. M., M. Moya, J. Johannes, et al. Secondary lymphedema in the mouse tail: lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc. Res. 72:161–171, 2006. https://doi.org/10.1016/j.mvr.2006.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt-Erfurth, U., and T. Hasan. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv. Ophthalmol. 45:195–214, 2000. https://doi.org/10.1016/S0039-6257(00)00158-2.

    Article  CAS  PubMed  Google Scholar 

  38. Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50:3–20, 2001. https://doi.org/10.1016/S0169-409X(01)00150-8.

    Article  CAS  Google Scholar 

  39. Swartz, M. A., A. Kaipainen, P. A. Netti, et al. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech. 32:1297–1307, 1999. https://doi.org/10.1016/S0021-9290(99)00125-6.

    Article  CAS  PubMed  Google Scholar 

  40. Szuba, A., M. Skobe, M. J. Karkkainen, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 16:1985–1987, 2002. https://doi.org/10.1096/fj.02-0401fje.

    Article  CAS  PubMed  Google Scholar 

  41. Tammela, T., A. Saaristo, T. Holopainen, et al. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci. Transl. Med. 3:1–8, 2011. https://doi.org/10.1126/scitranslmed.3001699.

    Article  CAS  Google Scholar 

  42. Tobbia, D., J. Semple, A. Baker, et al. Lymphedema development and lymphatic function following lymph node excision in sheep. J. Vasc. Res. 46:426–434, 2009. https://doi.org/10.1159/000194273.

    Article  PubMed  Google Scholar 

  43. Wei, H., F. Wang, Y. Wang, et al. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci. 108:478–487, 2017. https://doi.org/10.1111/cas.13138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weiler, M. J., M. T. Cribb, Z. Nepiyushchikh, et al. A novel mouse tail lymphedema model for observing lymphatic pump failure during lymphedema development. Sci. Rep. 9:10405, 2019. https://doi.org/10.1038/s41598-019-46797-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weiler, M., T. Kassis, and J. B. Dixon. Sensitivity analysis of near-infrared functional lymphatic imaging. J. Biomed. Opt.17:066019, 2012. https://doi.org/10.1117/1.JBO.17.6.066019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zawieja, S. D., W. Wang, X. Wu, et al. Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol. 302:H643–H653, 2012. https://doi.org/10.1152/ajpheart.00606.2011.

    Article  CAS  PubMed  Google Scholar 

  47. Zheng, W., H. Nurmi, S. Appak, et al. Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev. 28:1592–1603, 2014. https://doi.org/10.1101/gad.237677.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by The National Institutes of Health (Grant No. R01-HL113061) and Naumann-Etienne Foundation (Kuzminich).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate Institutional Committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brandon Dixon.

Additional information

Associate Editor Christine P. Hendon oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 297 kb)

Supplementary file2 (MP4 691 kb)

Supplementary file3 (MP4 679 kb)

Supplementary file4 (PDF 182 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzminich, Y., Dixon, J.B. Evaluation of Longitudinal Lymphatic Function Changes upon Injury in the Mouse Tail with Photodynamic Therapy. Cardiovasc Eng Tech 14, 204–216 (2023). https://doi.org/10.1007/s13239-022-00645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00645-z

Keywords

Navigation