Skip to main content

Advertisement

Log in

Recent development of targeted approaches for the treatment of breast cancer

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Breast cancer is the most prominent cause of cancer death in women worldwide. The highlights of this review are to provide an overview of the targeted therapeutic agents, challenges with metastatic breast cancer (MBCa), mechanisms of action through Hedgehog/Gli 1 signaling pathway and future prospective. Over a decade of success, several drugs have been approved and are in the advanced stages of clinical trials that target the receptors such as estrogen receptor, growth factor receptor, receptor activator of nuclear factor kappa-B, etc. Currently, several monoclonal antibodies are also used for the treatment of breast cancer. Advances in understanding tumor biology, particularly signaling pathways such as Notch signaling pathway, Hedgehog/Gli 1 signaling pathway, and inhibitors are considered to be important for bone metastasis. These studies may provide vital information for the design and development of new strategies with respect to efficacy, reduction of the side effects, and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhandari PR. Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. JTCM. 2015;5:81–7.

  2. Elancheran R, Maruthanila VL, Ramanathan M, et al. Recent discoveries and developments of androgen receptor based therapy for prostate cancer. Med Chem Commun. 2015;6:746–68.

    Article  CAS  Google Scholar 

  3. Chen J, Duan Y, Zhang X, et al. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct. 2015;6:995–1000.

    Article  CAS  PubMed  Google Scholar 

  4. Carvalho AF, Hyphantis T, Sales PMG, et al. Major depressive disorder in breast cancer: a critical systematic review of pharmacological and psychotherapeutic clinical trials. Cancer Treat Rev. 2014;40:349–55.

    Article  CAS  PubMed  Google Scholar 

  5. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2013, National Cancer Institute. Bethesda. MD, http://seer.cancer.gov/csr/1975_2013/. Based on November 2015 SEER data submission, posted to the SEER web site, April 2016.

  6. Di Leo A, Curigliano G, Dieras V, et al. New approaches for improving outcomes in breast cancer in Europe. Breast. 2015;24:321–30.

    Article  PubMed  Google Scholar 

  7. Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet. 1896;2:104–7.

    Article  Google Scholar 

  8. Kumar R, Zakharov MN, Khan SH, et al. The dynamic structure of the estrogen receptor. J Amino Acids. doi:10.4061/2011/812540.

  9. Roy SS, Vadlamudi RK. Role of estrogen receptor signaling in breast cancer metastasis. Int J Breast Cancer. 2012;. doi:10.1155/2012/654698.

    Google Scholar 

  10. Platet N, Cathiard A, Gleizes M, et al. Estrogen and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol. 2004;51:55–67.

    Article  PubMed  Google Scholar 

  11. Nagaraj G, Ma C. Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer. Breast Cancer Res Treat. 2015;150(2):231–42.

    Article  CAS  PubMed  Google Scholar 

  12. Kampa M, Pelekanou V, Notas G, et al. The estrogen receptor: two or more molecules, multiple variants, diverse localizations, signaling and functions. Are we undergoing a paradigm-shift as regards their significance in breast cancer? Hormones. 2013;12(1):69–85.

    PubMed  Google Scholar 

  13. Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann Oncol. 2011;22:1736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee SM, Moon J, Redman BG, et al. A phase II study of RO4929097 gamma-secretase inhibitor in metastatic melanoma: SWOG 0933. Cancer. 2015;121(3):432–40.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan X, Wu H, Xu H, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015. doi:10.1016/j.canlet.2015.07.048.

  16. Al-Hussaini H, Subramanyam D, Reedijk M, et al. notch signaling pathway as a therapeutic target in breast cancer. Mol Cancer Ther. 2011;10(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Zhang J, Xiong N, et al. Notch-1 signaling activates NF-jB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol. 2016;33:1–11.

    Article  PubMed  Google Scholar 

  18. Ramaswamy B, Lu Y, Teng KY, et al. Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway. Cancer Res. 2012;72(19):5048–59.

    Article  CAS  PubMed  Google Scholar 

  19. Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004;64:6071–4.

    Article  CAS  PubMed  Google Scholar 

  20. Souzaki M, Kubo M, Kai M, et al. Hedgehog signaling pathway mediates the progression of non-invasive breast cancer to invasive breast cancer. Cancer Sci. 2011;102:373–81.

    Article  CAS  PubMed  Google Scholar 

  21. Kwon YJ, Hurst DR, Steg AD, et al. Gli1 enhances migration and invasion via upregulation of MMP-11 and promotes metastasis in ER alpha negative breast cancer cell lines. ClinExp Metastasis. 2011;28:437–49.

    Article  CAS  Google Scholar 

  22. Benvenuto M, Masuelli L, Smaele ED, et al. In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget. 2016;7:9250–70.

    PubMed  PubMed Central  Google Scholar 

  23. Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget. 2015;6:13899–913.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li YH, Gao HF, Wang Y, et al. Overexpression of Gli1 in cancer interstitial tissues predicts early relapse after radical operation of breast cancer. Chin J Cancer Res. 2012;24(4):263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang X, Yang KH, Wanyan P, et al. Comparison of the efficacy and safety of denosumab versus bisphosphonates in breast cancer and bone metastases treatment: a meta–analysis of randomized controlled trials. Oncol Lett. 2014;7:1997–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Coleman R, Aksnes AK, Naume B, et al. A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Canc Res Treat. 2014;145:411–8.

    Article  CAS  Google Scholar 

  27. Clézardin P. Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res. 2011;13:207.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bäuerle T, Komljenovic D, Merz M, et al. Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int J Cancer. 2011;128(10):2453–62.

  29. Baselga J, Cervantes A, Martinelli E, et al. Phase I safety, pharmacokinetics, and inhibition of SRC activity study of saracatinib in patients with solid tumors. Clin Cancer Res. 2010;16:4876–83.

    Article  CAS  PubMed  Google Scholar 

  30. Park BJ, Whichard ZL, Corey SJ. Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines—lessons for design of combination targeted therapy. Cancer Lett. 2012;320:104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neves H, Kwok HF. Recent advances in the field of anti-cancer immunotherapy. BBA Clin. 2015;3:280–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miles D, Roché H, Martin M. Phase III multicenter clinical trial of the Sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16:1092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berman D, Korman A, Peck R, et al. The development of immunomodulatory monoclonal antibodies as a new therapeutic modality for cancer: the Bristol-Myers Squibb experience. Pharmacol Ther. 2015;148:132–53.

    Article  CAS  PubMed  Google Scholar 

  34. Khoja L, Butler MO, Kang SP, et al. Pembrolizumab. J Immunother Cancer. 2015;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  CAS  PubMed  Google Scholar 

  36. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  37. Montero AJ, Avancha K, Glück S, et al. A cost-benefit analysis of bevacizumab in combination with paclitaxel in the first-line treatment of patients with metastatic breast cancer. Breast Cancer Res Treat. 2012;132:747–51.

    Article  PubMed  Google Scholar 

  38. Mackey JR, Ramos-Vazquez M, Lipatov O, et al. Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase III Trial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer. J ClinOncol. 2014;32:1–8.

    Article  Google Scholar 

  39. Luu T, Frankel P, Chung C, et al. Phase I/II trial of vinorelbine and sorafenib in metastatic breast cancer. Clin Breast Cancer. 2014;14:94–100.

    Article  CAS  PubMed  Google Scholar 

  40. Burstein HJ, Elias AD, Rugo HS, et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2008;26:1810–6.

    Article  CAS  PubMed  Google Scholar 

  41. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28:1061–8.

    Article  CAS  PubMed  Google Scholar 

  42. Stalker L, Pemberton J, Moorehead RA. Inhibition of proliferation and migration of luminal and claudin-low breast cancer cells by PDGFR inhibitors. Cancer Cell Int. 2014;14:89.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14:7272–83.

    Article  CAS  PubMed  Google Scholar 

  44. Sharma T, Dhingra R, Singh S, et al. Aflibercept: a novel VEGF targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple tumors. Mini Rev Med Chem. 2013;13(4):530–40.

    Article  CAS  PubMed  Google Scholar 

  45. Kort A, Durmus S, Sparidans RW, et al. Brain and testis accumulation of regorafenib is restricted by breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm Res. 2015;32:2205–16.

    Article  CAS  PubMed  Google Scholar 

  46. Lu J. Palbociclib: a first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer. J Hematol Oncol. 2015;8:98. doi:10.1186/s13045-015-0194-5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peddi PF, Hurvitz SA. Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: latest evidence and clinical potential. Ther Adv Med Oncol. 2014;6(5):202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amiri-Kordestani L, Wedam S, Zhang L, et al. First FDA approval of neoadjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER2-positive breast cancer. Clin Cancer Res. 2014;20:5359–64.

    Article  CAS  PubMed  Google Scholar 

  49. Patel TA, Dave B, Rodriguez AA, et al. Dual HER2 blockade: preclinical and clinical data. Breast Cancer Res. 2014;16:419. doi:10.1186/s13058-014-0419-5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Geuna E, Montemurro F, Aglietta M, et al. Potential of afatinib in the treatment of patients with HER2-positive breast cancer. Breast Cancer Targets Ther. 2012;4:131–7.

  51. Nabholtz JM, Abrial C, Mouret-Reynier MA, et al. Multicentricneoadjuvant phase II study of panitumumab combined with an anthracycline/taxane-based chemotherapy in operable triple-negative breast cancer: identification of biologically defined signatures predicting treatment impact. Ann Oncol. 2014;25:1570–7.

    Article  CAS  PubMed  Google Scholar 

  52. Baselga J, Gomez P, Greil R, et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:2586–92.

    Article  CAS  Google Scholar 

  53. Ryan PD, Neven P, Blackwell KL, et al. P1-17-01: figitumumab plus exemestane versus exemestane as first-line treatment of postmenopausal hormone receptor- positive advanced breast cancer: a randomized, open-label phase II trial. Cancer Res. doi:10.1158/0008-5472.SABCS11-P1-17-01.

  54. Gao J, Chesebrough JW, Cartlidge SA, et al. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res. 2011;71:1029–40.

    Article  CAS  PubMed  Google Scholar 

  55. Sachdev D, Zhang X, Matise I, et al. The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene. 2010;29:251–62.

    Article  CAS  PubMed  Google Scholar 

  56. Robertson JF, Ferrero JM, Bourgeois H, et al. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol. 2013;14:228–35.

    Article  CAS  PubMed  Google Scholar 

  57. Fagan DH, Uselman RR, Sachdev D, et al. Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor (IGF1R): implications for breast cancer treatment. Cancer Res. 2012;72:3372–80. doi:10.1158/0008-5472.CAN-12-0684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wolff AC, Lazar AA, Bondarenko I, et al. Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol. 2013;31:195–202.

  59. Donald P, McDonnell Wardell SE, et al. Oral selective estrogen receptor downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J Med Chem. 2015;58:4883–7.

    Article  Google Scholar 

  60. Di Leo A, Jerusalem G, Petruzelka L, et al. Results of the CONFIRM Phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor positive advanced breast cancer. J Clin Oncol. 2010;28:4594–600.

    Article  PubMed  Google Scholar 

  61. Lai A, Kahraman M, Govek S, et al. Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J Med Chem. 2015;58:4888–904.

    Article  CAS  PubMed  Google Scholar 

  62. Degorce SL, Bailey A, Callis R, et al. Investigation of (E)–3-[4-(2-Oxo-3-aryl-chromen-4-yl)oxyphenyl]acrylic acids as oral selective estrogen Receptor down-regulators. J Med Chem. 2015;58:3522–33.

    Article  CAS  PubMed  Google Scholar 

  63. Safdari Y, Khalili M, Ebrahimzadehb MA, et al. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res. 2015;93:1–10.

    Article  CAS  PubMed  Google Scholar 

  64. Lim W, Park J, Lee YH, et al. Subglutinol A, an immunosuppressive a-pyrone diterpenoid from Fusarium subglutinans, acts as an estrogen receptor antagonist. BiochemBiophys Res Commun. 2015;461:507–12.

    Article  CAS  Google Scholar 

  65. Maruthanila VL, Poornima J, Mirunalini S. Attenuation of carcinogenesis and the mechanism underlying by the influence of indole-3-carbinol and its metabolite 3,3′-diindolylmethane: a therapeutic marvel. Adv Pharmacol Sci. 2014;. doi:10.1155/2014/832161.

    PubMed  PubMed Central  Google Scholar 

  66. Suzuki N, Liu X, Laxmi YR, et al. Anti-breast cancer potential of SS5020, a novel benzopyran antiestrogen. Int J Cancer. 2011;128:974–82.

    Article  CAS  PubMed  Google Scholar 

  67. Laxmi YR, Liu X, Suzuki N, et al. Anti-breast cancer potential of SS1020, a novel antiestrogen lacking estrogenic and genotoxic actions. Int J Cancer. 2010;127:1718–26.

    Article  CAS  PubMed  Google Scholar 

  68. Buzdar A, Vogel C, Schwartzberg L, et al. Randomized double-blind phase 2 trial of 3 doses of TAS-108 in patients with advanced or metastatic postmenopausal breast cancer. Cancer. 2012;118:3244–53.

    Article  CAS  PubMed  Google Scholar 

  69. Nishino T, Yamanouchi H, Ishibashi K, et al. Antiovulatory effect of a single injection of pure antiestrogen ZK 191703 at early stage of rat estrus cycle. J Steroid Biochem Mol Biol. 2009;114:152–60.

    Article  CAS  PubMed  Google Scholar 

  70. Van de Velde P, Nique F, Bouchoux F, et al. RU 58,668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J Steroid Biochem Mol Biol. 1994;48:187–96.

    Article  PubMed  Google Scholar 

  71. Garner F, Shomali M, Paquin D, et al. RAD1901: a novel, orally bioavailable selective estrogen receptor degrader that demonstrates antitumor activity in breast cancer xenograft models. Anticancer Drugs. 2015;26:948–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks are attributable to DST &DBT, Govt. of India for financial support and Bioinformatics Infrastructure facility, IASST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibon Kotoky.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruthanila, V.L., Elancheran, R., Kunnumakkara, A.B. et al. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer 24, 191–219 (2017). https://doi.org/10.1007/s12282-016-0732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-016-0732-1

Keywords

Navigation