Skip to main content

Cathepsin B maturation plays a critical role in leptin-induced hepatic cancer cell growth through activation of NLRP3 inflammasomes

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Leptin, an adipose tissue-derived hormone, exhibits potent tumor promoting effects through various mechanisms. Cathepsin B, a member of the lysosomal cysteine proteases, has been shown to modulate the growth of cancer cells. In this study, we have investigated the role of cathepsin B signaling in leptin-induced hepatic cancer growth. Leptin treatment caused significant increase in the levels of active cathepsin B through the axis of endoplasmic reticulum stress and autophagy induction without significant effects on pre- and pro-forms of cathepsin B. Interestingly, inhibition of cathepsin B signaling by gene silencing or treatment with a selective pharmacological inhibitor (CA-074) prevented leptin-enhanced viability of hepatic cancer cell and suppressed progression of cell cycle, indicating the critical role of cathepsin B in leptin-induced hepatic cancer growth. We have further observed that maturation of cathepsin B is required for NLRP3 inflammasomes activation, which is implicated in the growth of hepatic cancer cell. The crucial roles of cathepsin B maturation in leptin-induced hepatic cancer growth and NLRP3 inflammasomes activation were confirmed in an in vivo HepG2 tumor xenograft model. Taken together, these results demonstrate that cathepsin B signaling plays a pivotal role in leptin-induced hepatic cancer cell growth by activating NLRP3 inflammasomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1A2C1013132) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03044512). The authors thank the Ministry of Education and the Basic Science Research Program of the National Research Foundation of Korea (NRF) for financial support; the Core Research Support Center for Natural Products and Medical Materials (CRCNM) for the technical support regarding the confocal microscopic analysis.

Funding

This work was supported by National research foundation of Korea (Grant Nos. NRF-2021R1A2C1013132, 2020R1A6A1A03044512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil-Hoon Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 127 KB)

Supplementary file2 (PPTX 74763 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T., Kumar, R.P. & Park, PH. Cathepsin B maturation plays a critical role in leptin-induced hepatic cancer cell growth through activation of NLRP3 inflammasomes. Arch. Pharm. Res. 46, 160–176 (2023). https://doi.org/10.1007/s12272-023-01437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-023-01437-2

Keywords