Skip to main content

Advertisement

Selenoprotein T Deficiency Leads to Neurodevelopmental Abnormalities and Hyperactive Behavior in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Selenoprotein T (SelT) is a newly discovered thioredoxin-like protein, which is abundantly but transiently expressed in the neural lineage during brain ontogenesis. Because its physiological function in the brain remains unknown, we developed a conditional knockout mouse line (Nes-Cre/SelTfl/fl) in which SelT gene is specifically disrupted in nerve cells. At postnatal day 7 (P7), these mice exhibited reduced volume of different brain structures, including hippocampus, cerebellum, and cerebral cortex. This phenotype, which is observed early during the first postnatal week, culminated at P7 and was associated with increased loss of immature neurons but not glial cells, through apoptotic cell death. This phenomenon was accompanied by elevated levels of intracellular reactive oxygen species, which may explain the increased neuron demise and reduced brain structure volumes. At the second postnatal week, an increase in neurogenesis was observed in the cerebellum of Nes-Cre/SelTfl/fl mice, suggesting the occurrence of developmental compensatory mechanisms in the brain. In fact, the brain volume alterations observed at P7 were attenuated in adult mice. Nevertheless, SelT mutant mice exhibited a hyperactive behavior, suggesting that despite an apparent morphological compensation, SelT deficiency leads to cerebral malfunction in adulthood. Altogether, these results demonstrate that SelT exerts a neuroprotective role which is essential during brain development, and that its loss impairs mice behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Atkins JF, Gesteland RF (2000) The twenty-first amino acid. Nature 407:463–465. doi:10.1038/35035189

    Article  CAS  PubMed  Google Scholar 

  2. Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790:1415–1423. doi:10.1016/j.bbagen.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  3. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. doi:10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Savaskan NE, Borchert A, Bräuer AU, Kuhn H (2007) Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med 43:191–201. doi:10.1016/j.freeradbiomed.2007.03.033

    Article  CAS  PubMed  Google Scholar 

  5. Tanguy Y, Falluel-Morel A, Arthaud S, Boukhzar L, Manecka D-L, Chagraoui A, Prevost G, Elias S et al (2011) The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology 152:4322–4335. doi:10.1210/en.2011-1246

    Article  CAS  PubMed  Google Scholar 

  6. Pitts MW, Byrns CN, Ogawa-Wong AN, Kremer P, Berry MJ (2014) Selenoproteins in nervous system development and function. Biol Trace Elem Res 161:231–245. doi:10.1007/s12011-014-0060-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW et al (2010) Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J 24:844–852. doi:10.1096/fj.09-143974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agamy O, Ben Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R et al (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87:538–544. doi:10.1016/j.ajhg.2010.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soerensen J, Jakupoglu C, Beck H, Förster H, Schmidt J, Schmahl W, Schweizer U, Conrad M et al (2008) The role of thioredoxin reductases in brain development. PLoS ONE 3:e1813. doi:10.1371/journal.pone.0001813

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaindl AM, Favrais G, Gressens P (2009) Molecular mechanisms involved in injury to the preterm brain. J Child Neurol 24:1112–1118. doi:10.1177/0883073809337920

    Article  PubMed  PubMed Central  Google Scholar 

  11. Farina M, Rocha JBT, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563. doi:10.1016/j.lfs.2011.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cristalli DO, Arnal N, Marra FA, De Alaniz MJT, Marra CA (2012) Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci 314:48–56. doi:10.1016/j.jns.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS ONE 7:e33066. doi:10.1371/journal.pone.0033066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV et al (2007) SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46:6871–6882. doi:10.1021/bi602462q

    Article  CAS  PubMed  Google Scholar 

  15. Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, Galas L, Ait-Ali D et al (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22:1756–1768. doi:10.1096/fj.06-075820

    Article  CAS  PubMed  Google Scholar 

  16. Ikematsu K, Tsuda R, Tsuruya S, Nakasono I (2007) Identification of novel genes expressed in hypoxic brain condition by fluorescence differential display. For Sci Int 169:168–172. doi:10.1016/j.forsciint.2006.08.015

    CAS  Google Scholar 

  17. Sengupta A, Carlson BA, Labunskyy VM, Gladyshev VN, Hatfield DL (2009) Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells. Biochem Cell Biol 87:953–961. doi:10.1139/O09-064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlson BA, Xu X-M, Gladyshev VN, Hatfield DL (2005) Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem 280:5542–5548. doi:10.1074/jbc.M411725200

    Article  CAS  PubMed  Google Scholar 

  19. Farley FW, Soriano P, Steffen LS, Dymecki SM (2000) Widespread recombinase expression using FLPeR (Flipper) mice. Genesis 28:106–110. doi:10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  20. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R et al (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103

    Article  CAS  PubMed  Google Scholar 

  21. Gundersen HJ (1980) Stereology—or how figures for spatial shape and content are obtained by observation of structures in sections. Microsc Acta 83:409–426

    CAS  PubMed  Google Scholar 

  22. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  CAS  PubMed  Google Scholar 

  23. Paxinos G, Halliday G, Watson C, Koutcherov Y, Wang H (2006) Atlas of the developing mouse brain at E17.5, P0 and P6. Academic, San Diego

  24. Paxinos G, Franklin KBJ (2012) The mouse brain atlas. Academic, San Diego

  25. Desrues L, Lefebvre T, Lecointre C, Schouft M-T, Leprince J, Compère V, Morin F, Proust F et al (2012) Down-regulation of GABAA receptor via promiscuity with the vasoactive peptide urotensin II receptor. Potential involvement in astrocyte plasticity. PLoS ONE 7:e36319. doi:10.1371/journal.pone.0036319

    Article  PubMed  PubMed Central  Google Scholar 

  26. Desrumaux C (2004) Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. FASEB J 19:296–297. doi:10.1096/fj.04-2400fje

    PubMed  Google Scholar 

  27. Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111:457–501

    Article  CAS  PubMed  Google Scholar 

  28. Johnston MV, Nakajima W, Hagberg H (2002) Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist 8:212–220

    Article  CAS  PubMed  Google Scholar 

  29. Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Nat Acad Sci 106:14108–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Falluel-Morel A, Tascau LI, Sokolowski K, Brabet P, DiCicco-Bloom E (2008) Granule cell survival is deficient in PAC1−/− mutant cerebellum. J Mol Neurosci 36:38–44. doi:10.1007/s12031-008-9066-6

    Article  CAS  PubMed  Google Scholar 

  31. Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE (2005) Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 26:2518–2524. doi:10.1016/j.peptides.2005.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komuro H, Yacubova E (2003) Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084–1098

    Article  CAS  PubMed  Google Scholar 

  33. Chung YW, Jeong D, Noh OJ, Park YH, Kang SI, Lee MG, Lee TH, Yim MB et al (2009) Antioxidative role of selenoprotein W in oxidant-induced mouse embryonic neuronal cell death. Mol Cells 27:609–613. doi:10.1007/s10059-009-0074-3

    Article  CAS  PubMed  Google Scholar 

  34. Mendelev N, Mehta SL, Witherspoon S, He Q, Sexton JZ, Li PA (2011) Upregulation of human selenoprotein H in murine hippocampal neuronal cells promotes mitochondrial biogenesis and functional performance. Mitochondrion 11:76–82. doi:10.1016/j.mito.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  35. Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40:1513–1523. doi:10.1016/j.freeradbiomed.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  36. Fradejas N, Del Carmen S-PÉREZM, Tranque P, Calvo S (2011) Selenoprotein S expression in reactive astrocytes following brain injury. Glia 59:959–972. doi:10.1002/glia.21168

    Article  PubMed  Google Scholar 

  37. Sun Y, Gu QP, Whanger PD (2001) Selenoprotein W in overexpressed and underexpressed rat glial cells in culture. J Inor Biochem 84:151–156

    Article  CAS  Google Scholar 

  38. Yamada A, Suzuki N, Kuroiwa M, Takahashi A, Matsuyama S, Asayama K, Hirato J, Nakazato Y et al (2003) Encephalopathy in megacystis-microcolon-intestinal hypoperistalsis syndrome patients on long-term total parenteral nutrition possibly due to selenium deficiency. Acta Neuropathol 106:234–242. doi:10.1007/s00401-003-0724-z

    Article  PubMed  Google Scholar 

  39. Lyck L, Krøigård T, Finsen B (2007) Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice: post-natal recruitment of neocortical neurones. Eur J Neurosci 26:1749–1764. doi:10.1111/j.1460-9568.2007.05763.x

    Article  PubMed  Google Scholar 

  40. Raff M (1996) Size control: the regulation of cell numbers in animal development. Cell 86:173–175. doi:10.1016/S0092-8674(00)80087-2

    Article  CAS  PubMed  Google Scholar 

  41. Jacobson DJ, Well M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354. doi:10.1016/S0092-8674(00)81873-5

    Article  CAS  PubMed  Google Scholar 

  42. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8:59–71. doi:10.1016/j.stem.2010.11.028

    Article  PubMed  PubMed Central  Google Scholar 

  43. Topchiy E, Panzhinskiy E, Griffin WST, Barger SW, Das M, Zawada WM (2013) Nox4-generated superoxide drives angiotensin II-induced neural stem cell proliferation. Dev Neurosci 35:293–305. doi:10.1159/000350502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coleman LG, Oguz I, Lee J, Styner M, Crews FT (2012) Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis. Alcohol 46:603–612. doi:10.1016/j.alcohol.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller MW (1995) Generation of neurons in the rat dentate gyrus and hippocampus: effects of prenatal and postnatal treatment with ethanol. Alcohol Clin Exp Res 19:1500–1509

    Article  CAS  PubMed  Google Scholar 

  46. Dong H, Csernansky CA, Goico B, Csernansky JG (2003) Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci 23:1742–1749

    CAS  PubMed  Google Scholar 

  47. Bercury KK, Macklin WB (2015) Dynamics and mechanisms of CNS myelination. Dev Cell 32:447–458. doi:10.1016/j.devcel.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  48. Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, Sakaue M, Miyazaki J et al (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98:13355–13360. doi:10.1073/pnas.231094498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Otto C, Martin M, Wolfer DP, Lipp HP, Maldonado R, Schütz G (2001) Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res Mol Brain Res 92:78–84. doi:10.1016/S0169-328X(01)00153-X

    Article  CAS  PubMed  Google Scholar 

  50. Watanabe C, Satoh H (1995) Effects of prolonged selenium deficiency on open field behavior and Morris water maze performance in mice. Pharmacol Biochem Behav 51:747–752

    Article  CAS  PubMed  Google Scholar 

  51. Peters MM, Hill KE, Burk RF, Weeber EJ (2006) Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodeg 1:12

    Article  Google Scholar 

  52. Ieraci A, Herrera DG (2006) Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain. PLoS Med 3:e101. doi:10.1371/journal.pmed.0030101

    Article  PubMed  PubMed Central  Google Scholar 

  53. Streissguth AP, Sampson PD, Olson HC, Bookstein FL, Barr HM, Scott M, Feldman J, Mirsky AF (1994) Maternal drinking during pregnancy: attention and short-term memory in 14-year-old offspring—a longitudinal prospective study. Alcohol Clin Exp Res 18:202–218. doi:10.1111/j.1530-0277.1994.tb00904.x

    Article  CAS  PubMed  Google Scholar 

  54. Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S (2002) Case–control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J Am Acad Child Psychol 41:378–385. doi:10.1097/00004583-200204000-00009

    Article  Google Scholar 

  55. Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA (2015) The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 9:296. doi:10.3389/fnins.2015.00296

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:777–807. doi:10.1007/s12311-012-0355-9

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181. doi:10.1016/j.pathophys.2006.05.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut National de la Santé et de la Recherche Médicale (Inserm, grant number U982); the University of Rouen; the Regional Council of Haute-Normandie; the European Community Interreg IV Program (grants PeReNE and TC2N); and the French Ministry for Higher Education and Research (Scholarship to M.T.C.). We thank Dorthe Cartier and Pr Pierrick Gandolfo of Inserm U982 for technical assistance and helpful comments. Part of the behavioral tests was done on the Service Commun d’Analyse Comportementale (SCAC). Images were acquired in PRIMACEN (http://primacen.crihan.fr), the Cell Imaging Facility of Normandy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Anouar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Youssef Anouar and Anthony Falluel-Morel should be considered co-last authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castex, M.T., Arabo, A., Bénard, M. et al. Selenoprotein T Deficiency Leads to Neurodevelopmental Abnormalities and Hyperactive Behavior in Mice. Mol Neurobiol 53, 5818–5832 (2016). https://doi.org/10.1007/s12035-015-9505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9505-7

Keywords