Skip to main content

Advertisement

Mechanisms controlling granule-mediated cytolytic activity of cytotoxic T lymphocytes

  • Current Immunology Research at Jefferson
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Cytotoxic T lymphocytes (CTL) play a critical role in immunity against viruses and cancer. The antigen receptor or T-cell receptor (TCR) on CTL determines the specificity toward target cells. The CD8 co-receptor functions in concert with the TCR to enhance TCR-mediated signaling, accounting for the remarkable sensitivity and swift signaling kinetics of the CTL response. The latter ensures efficient delivery and release of lytic granules, resulting in sensitive and rapid destruction of target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eisen HN, Sykulev Y, Tsomides TJ. The antigen-specific T-cell receptor and its reactions with peptide-MHC complexes. In: Haber E, editor. Antigen-binding molecules: antibodies and T-cell receptors. San Diego: Academic Press; 1997. p. 1–56.

    Google Scholar 

  2. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y. Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol. 1998;16:523–44.

    PubMed  CAS  Google Scholar 

  3. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9.

    PubMed  CAS  Google Scholar 

  4. Ashton-Rickardt PG, Tonegawa S. A differential-avidity model for T-cell selection. Immunol Today. 1994;15(8):362–6.

    PubMed  CAS  Google Scholar 

  5. Jameson SC, Hogquist KA, Bevan MJ. Positive selection of thymocytes. Annu Rev Immunol. 1995;13:93–126.

    PubMed  CAS  Google Scholar 

  6. Germain RN, Stefanova I, Dorfman J. Self-recognition and the regulation of CD4+ T cell survival. Adv Exp Med Biol. 2002;512:97–105.

    PubMed  CAS  Google Scholar 

  7. Takada K, Jameson SC. Self-class I MHC molecules support survival of naive CD8 T cells, but depress their functional sensitivity through regulation of CD8 expression levels. J Exp Med. 2009;206:2253–69.

    PubMed  CAS  Google Scholar 

  8. Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature. 2005;434:238–43.

    PubMed  CAS  Google Scholar 

  9. Anikeeva N, Lebedeva T, Clapp AR, Goldman ER, Dustin ML, Mattoussi H, Sykulev Y. Quantum dot/peptide-MHC biosensors reveal strong CD8-dependent cooperation between self and viral antigens that augment the T cell response. Proc Natl Acad Sci USA. 2006;103:16846–51.

    PubMed  CAS  Google Scholar 

  10. Yachi PP, Lotz C, Ampudia J, Gascoigne NR. T cell activation enhancement by endogenous pMHC acts for both weak and strong agonists but varies with differentiation state. J Exp Med. 2007;204:2747–57.

    PubMed  CAS  Google Scholar 

  11. Madden DR. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol. 1995;13:587–622.

    PubMed  CAS  Google Scholar 

  12. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors? Annu Rev Immunol. 2006;24:419–66.

    PubMed  CAS  Google Scholar 

  13. Burrows SR, Rossjohn J, McCluskey J. Have we cut ourselves too short in mapping CTL epitopes? Trends Immunol. 2006;27:11–6.

    PubMed  CAS  Google Scholar 

  14. Wu MX, Tsomides TJ, Eisen HN. Tissue distribution of natural peptides derived from a ubiquitous dehydrogenase, including a novel liver-specific peptide that demonstrates the pronounced specificity of low affinity T cell reactions. J Immunol. 1995;154:4495–502.

    PubMed  CAS  Google Scholar 

  15. Martinez-Hackert E, Anikeeva N, Kalams SA, Walker BD, Hendrickson WA, Sykulev Y. Structural basis for degenerate recognition of natural HIV peptide variants by cytotoxic lymphocytes. J Biol Chem. 2006;281:20205–12.

    PubMed  CAS  Google Scholar 

  16. Boniface JJ, Reich Z, Lyons DS, Davis MM. Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc Natl Acad Sci USA. 1999;96:11446–51.

    PubMed  CAS  Google Scholar 

  17. Garcia K, Degano M, Pease L, Huang M, Peterson P, Teyton L, Wilson I. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science. 1998;279:1166–72.

    PubMed  CAS  Google Scholar 

  18. Willcox B, Gao G, Wyer J, Ladbury J, Bell J, Jakobsen B, van der Merwe P. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity. 1999;10:357–65.

    PubMed  CAS  Google Scholar 

  19. Yin L, Huseby E, Scott-Browne J, Rubtsova K, Pinilla C, Crawford F, Marrack P, Dai S, Kappler JW. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity. 2011;35(1):23–33.

    PubMed  CAS  Google Scholar 

  20. Anikeeva N, Lebedeva T, Krogsgaard M, Tetin SY, Martinez-Hackert E, Kalams SA, Davis MM, Sykulev Y. Distinct molecular mechanisms account for the specificity of two different T-cell receptors. Biochemistry. 2003;42:4709–16.

    PubMed  CAS  Google Scholar 

  21. Rudolph MG, Wilson IA. The specificity of TCR/pMHC interaction. Curr Opin Immunol. 2002;14:52–65.

    PubMed  CAS  Google Scholar 

  22. Feng D, Bond CJ, Ely LK, Maynard J, Garcia KC. Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction ‘codon’. Nat Immunol. 2007;8:975–83.

    PubMed  CAS  Google Scholar 

  23. Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C, Roussel A, Kearney A, van der Merwe PA, Schmitt-Verhulst AM, Malissen B. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? EMBO J. 2007;26:1972–83.

    PubMed  CAS  Google Scholar 

  24. Huseby ES, White J, Crawford F, Vass T, Becker D, Pinilla C, Marrack P, Kappler JW. How the T cell repertoire becomes peptide and MHC specific? Cell. 2005;122:247–60.

    PubMed  CAS  Google Scholar 

  25. Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, Burrows JM, Kjer-Nielsen L, Kostenko L, Purcell AW, McCluskey J, Rossjohn J. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I-bound peptide. Nat Immunol. 2005;6:1114–22.

    PubMed  CAS  Google Scholar 

  26. Colf LA, Bankovich AJ, Hanick NA, Bowerman NA, Jones LL, Kranz DM, Garcia KC. How a single T cell receptor recognizes both self and foreign MHC? Cell. 2007;129:135–46.

    PubMed  CAS  Google Scholar 

  27. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Evolutionarily conserved amino acids that control TCR–MHC interaction. Annu Rev Immunol. 2008;26:171–203.

    PubMed  CAS  Google Scholar 

  28. Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, Guinter TI, Adoro S, Adams A, Sharrow SO, Feigenbaum L, Singer A. Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity. 2007;27:735–50.

    PubMed  Google Scholar 

  29. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity. 1997;6:715–26.

    PubMed  CAS  Google Scholar 

  30. Mareeva T, Martinez-Hackert E, Sykulev Y. How a T cell receptor-like antibody recognizes major histocompatibility complex-bound peptide? J Biol Chem. 2008;283:29053–9.

    PubMed  CAS  Google Scholar 

  31. Sykulev Y, Brunmark A, Jackson M, Cohen RJ, Peterson PA, Eisen HN. Kinetics and affinity of reactions between an antigen-specific T-cell receptor and peptide-MHC complexes. Immunity. 1994;1:15–22.

    PubMed  CAS  Google Scholar 

  32. Al-Ramadi BK, Jelonek MT, Boyd LF, Margulies DH, Bothwell AL. Lack of strick correlation of functional sensitization with the apparent affinity of MHC/peptide complexes for the TCR. J Immunol. 1995;155:662–73.

    PubMed  CAS  Google Scholar 

  33. Lyons DS, Lieberman SA, Hampl J, Boniface JJ, Chien Y-H, Davis MM. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity. 1996;5:53–61.

    PubMed  CAS  Google Scholar 

  34. Kersh GJ, Kersh EN, Fremont DH, Allen PM. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity. 1998;9:817–26.

    PubMed  CAS  Google Scholar 

  35. Luescher IF, Vivier E, Layer A, Mahiou J, Godeau F, Malissen B, Romero P. CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature. 1995;373:353–6.

    PubMed  CAS  Google Scholar 

  36. Sykulev Y, Vugmeyster Y, Brunmark A, Ploegh H, Eisen H. Peptide antagonism and T cell receptor interactions with peptide-MHC complexes. Immunity. 1998;9(4):475–83.

    PubMed  CAS  Google Scholar 

  37. Matsui K, Boniface JJ, Reay PA, Schild H, de Groth BF, Davis MM. Low affinity interaction of peptide-MHC complexes with T cell receptors. Science. 1991;254:1788–91.

    PubMed  CAS  Google Scholar 

  38. Crawford F, Kozono H, White J, Marrack P, Kappler J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity. 1998;8:675–82.

    PubMed  CAS  Google Scholar 

  39. Sykulev Y, Cohen RJ, Eisen HN. The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. Proc Natl Acad Sci USA. 1995;92:11990–2.

    PubMed  CAS  Google Scholar 

  40. Tian S, Maile R, Collins EJ, Frelinger JA. CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol. 2007;179:2952–60.

    PubMed  CAS  Google Scholar 

  41. Hwang J, Gheber LA, Margolis L, Edidin M. Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J. 1998;74:2184–90.

    PubMed  CAS  Google Scholar 

  42. Zhong L, Zeng G, Lu X, Wang RC, Gong G, Yan L, Huang D, Chen ZW. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS One. 2009;4:e5945.

    PubMed  Google Scholar 

  43. Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, Klein LO, Schutz GJ, Davis MM. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature. 2010;463:963–7.

    PubMed  CAS  Google Scholar 

  44. Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N, Evavold BD, Zhu C. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature. 2010;464:932–6.

    PubMed  CAS  Google Scholar 

  45. Jiang N, Huang J, Edwards LJ, Liu B, Zhang Y, Beal CD, Evavold BD, Zhu C. Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity. 2011;34:13–23.

    PubMed  CAS  Google Scholar 

  46. Gakamsky DM, Luescher IF, Pramanik A, Kopito RB, Lemonnier F, Vogel H, Rigler R, Pecht I. CD8 kinetically promotes ligand binding to the T-cell antigen receptor. Biophys J. 2005;89:2121–33.

    PubMed  CAS  Google Scholar 

  47. van Bleek GM, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature. 1990;348:213–6.

    PubMed  Google Scholar 

  48. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science. 1994;264:716–9.

    PubMed  CAS  Google Scholar 

  49. Tsomides TJ, Aldovini A, Johnson RP, Walker BD, Young RA, Eisen HN. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J Exp Med. 1994;180:1283–93.

    PubMed  CAS  Google Scholar 

  50. Tsomides TJ, Walker BD, Eisen HN. An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci USA. 1991;88:11276–80.

    PubMed  CAS  Google Scholar 

  51. Kageyama S, Tsomides TJ, Sykulev Y, Eisen HN. Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. J Immunol. 1995;154:567–76.

    PubMed  CAS  Google Scholar 

  52. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996;4:565–71.

    PubMed  CAS  Google Scholar 

  53. Sporri R, Reis e Sousa C. Self peptide/MHC class I complexes have a negligible effect on the response of some CD8+ T cells to foreign antigen. Eur J Immunol. 2002;32:3161–70.

    PubMed  CAS  Google Scholar 

  54. Ma Z, Sharp KA, Janmey PA, Finkel TH. Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol. 2008;6:e43.

    PubMed  Google Scholar 

  55. Anikeeva N, Gakamsky D, Sykulev Y, NSTI Nanotech Editor. Quantum dots as a unique nanoscaffold to mimic membrane receptor clustering. Boston: Nanotech World Conference; 2011.

    Google Scholar 

  56. Holler PD, Kranz DM. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity. 2003;18:255–64.

    PubMed  CAS  Google Scholar 

  57. Cebecauer M, Guillaume P, Mark S, Michielin O, Boucheron N, Bezard M, Meyer BH, Segura JM, Vogel H, Luescher IF. CD8+ cytotoxic T lymphocyte activation by soluble major histocompatibility complex-peptide dimers. J Biol Chem. 2005;280:23820–8.

    PubMed  CAS  Google Scholar 

  58. Cochran JR, Cameron TO, Stone JD, Lubetsky JB, Stern LJ. Receptor proximity, not intermolecular orientation: is critical for triggering T-cell activation. J Biol Chem. 2001;276:28068–74.

    PubMed  CAS  Google Scholar 

  59. Tallquist MD, Yun TA, Pease LR. A single T cell receptor recognizes structurally distinct MHC/peptide complexes with high specificity. J Exp Med. 1996;184:1017–26.

    PubMed  CAS  Google Scholar 

  60. Delaney JR, Sykulev Y, Eisen HN, Tonegawa S. Differences in the level of expression of class I major histocompatibility complex proteins on thymic epithelial and dendritic cells influence the decision of immature thymocytes between positive and negative selection. Proc Natl Acad Sci USA. 1998;95:5235–40.

    PubMed  CAS  Google Scholar 

  61. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129:147–61.

    PubMed  CAS  Google Scholar 

  62. Adachi K, Davis MM. T-cell receptor ligation induces distinct signaling pathways in naive versus antigen-experienced T cells. Proc Natl Acad Sci USA. 2011;108:1549–54.

    PubMed  CAS  Google Scholar 

  63. Jameson SC, Carbone FR, Bevan MJ. Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J Exp Med. 1993;177:1541–50.

    PubMed  CAS  Google Scholar 

  64. Klenerman P, Rowland-Jones S, McAdam S, Edwards J, Daenke S, Lalloo D, Köppe B, Rosenberg W, Boyd D, Edwards A, Giangrande P, Phillips RE, McMichael AJ. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 gag variants. Nature. 1994;369:403–7.

    PubMed  CAS  Google Scholar 

  65. Sloan-Lancaster J, Shaw AS, Rothbard JB, Allen PM. Partial T cell signaling: altered phospho-z and lack of zap70 recruitment in APL-induced T cell anergy. Cell. 1994;79:913–22.

    PubMed  CAS  Google Scholar 

  66. Dustin ML, Long EO. Cytotoxic immunological synapses. Immunol Rev. 2010;235:24–34.

    PubMed  CAS  Google Scholar 

  67. Jenkins MR, Griffiths GM. The synapse and cytolytic machinery of cytotoxic T cells. Curr Opin Immunol. 2010;22:308–13.

    PubMed  CAS  Google Scholar 

  68. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse: a molecular machine controlling T cell activation. Science. 1999;285:221–7.

    PubMed  CAS  Google Scholar 

  69. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15:751–61.

    PubMed  CAS  Google Scholar 

  70. Beal AM, Anikeeva N, Varma R, Cameron TO, Norris PJ, Dustin ML, Sykulev Y. Protein kinase ctheta regulates stability of the peripheral adhesion ring junction and contributes to the sensitivity of target cell lysis by CTL. J Immunol. 2008;181:4815–24.

    PubMed  CAS  Google Scholar 

  71. Beal AM, Anikeeva N, Varma R, Cameron TO, Vasiliver-Shamis G, Norris PJ, Dustin ML, Sykulev Y. Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain. Immunity. 2009;31:632–42.

    PubMed  CAS  Google Scholar 

  72. Jenkins MR, Tsun A, Stinchcombe JC, Griffiths GM. The strength of T cell receptor signal controls the polarization of cytotoxic machinery to the immunological synapse. Immunity. 2009;31:621–31.

    PubMed  CAS  Google Scholar 

  73. Monks C, Freiberg B, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395:82–6.

    PubMed  CAS  Google Scholar 

  74. Dustin ML, Chakraborty AK, Shaw AS. Understanding the structure and function of the immunological synapse. Cold Spring Harb Perspect Biol. 2010;2:a002311.

    PubMed  CAS  Google Scholar 

  75. Thauland TJ, Parker DC. Diversity in immunological synapse structure. Immunology. 2010;131:466–72.

    PubMed  CAS  Google Scholar 

  76. Somersalo K, Anikeeva N, Sims TN, Thomas VK, Strong RK, Spies T, Lebedeva T, Sykulev Y, Dustin ML. Cytotoxic T lymphocytes form an antigen-independent ring junction. J Clin Invest. 2004;113:49–57.

    PubMed  CAS  Google Scholar 

  77. Segura JM, Guillaume P, Mark S, Dojcinovic D, Johannsen A, Bosshard G, Angelov G, Legler DF, Vogel H, Luescher IF. Increased mobility of major histocompatibility complex I-peptide complexes decreases the sensitivity of antigen recognition. J Biol Chem. 2008;283:24254–63.

    PubMed  CAS  Google Scholar 

  78. Anikeeva N, Somersalo K, Sims TN, Thomas VK, Dustin ML, Sykulev Y. Distinct role of lymphocyte function-associated antigen-1 in mediating effective cytolytic activity by cytotoxic T lymphocytes. Proc Natl Acad Sci USA. 2005;102:6437–42.

    PubMed  CAS  Google Scholar 

  79. Suzuki J, Yamasaki S, Wu J, Koretzky GA, Saito T. The actin cloud induced by LFA-1-mediated outside-in signals lowers the threshold for T-cell activation. Blood. 2007;109:168–75.

    PubMed  CAS  Google Scholar 

  80. Poenie M, Kuhn J, Combs J. Real-time visualization of the cytoskeleton and effector functions in T cells. Curr Opin Immunol. 2004;16:428–38.

    PubMed  CAS  Google Scholar 

  81. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443:462–5.

    PubMed  CAS  Google Scholar 

  82. Ribeiro M, McNamara JC. Calcium movements during pigment aggregation in freshwater shrimp chromatophores. Pigment Cell Res. 2007;20:70–7.

    PubMed  CAS  Google Scholar 

  83. Quann EJ, Merino E, Furuta T, Huse M. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol. 2009;10:627–35.

    PubMed  CAS  Google Scholar 

  84. Stinchcombe JC, Griffiths GM. Secretory mechanisms in cell-mediated cytotoxicity. Annu Rev Cell Dev Biol. 2007;23:495–517.

    PubMed  CAS  Google Scholar 

  85. Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur EL, Kuhn J, Poenie M. Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci USA. 2006;103:14883–8.

    PubMed  CAS  Google Scholar 

  86. Henkart PA, Millard PJ, Reynolds CW, Henkart MP. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J Exp Med. 1984;160:75–93.

    PubMed  CAS  Google Scholar 

  87. de Saint Basile G, Menasche G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10:568–79.

    PubMed  Google Scholar 

  88. Faroudi M, Utzny C, Salio M, Cerundolo V, Guiraud M, Muller S, Valitutti S. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci USA. 2003;100:14145–50.

    PubMed  CAS  Google Scholar 

  89. Purbhoo MA, Irvine DJ, Huppa JB, Davis MM. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004;5:524–30.

    PubMed  CAS  Google Scholar 

  90. Potter TA, Grebe K, Freiberg B, Kupfer A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc Natl Acad Sci USA. 2001;98:12624–9.

    PubMed  CAS  Google Scholar 

  91. Barcia C, Thomas CE, Curtin JF, King GD, Wawrowsky K, Candolfi M, Xiong WD, Liu C, Kroeger K, Boyer O, Kupiec-Weglinski J, Klatzmann D, Castro MG, Lowenstein PR. In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain. J Exp Med. 2006;203:2095–107.

    PubMed  CAS  Google Scholar 

  92. Chow A, Toomre D, Garrett W, Mellman I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature. 2002;418:988–94.

    PubMed  CAS  Google Scholar 

  93. Boes M, Cerny J, Massol R, Op den Brouw M, Kirchhausen T, Chen J, Ploegh HL. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature. 2002;418:983–8.

    PubMed  CAS  Google Scholar 

  94. Bacso Z, Bene L, Damjanovich L, Damjanovich S. INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells. Biochem Biophys Res Commun. 2002;290:635–40.

    PubMed  CAS  Google Scholar 

  95. Lebedeva T, Anikeeva N, Kalams SA, Walker BD, Gaidarov I, Keen JH, Sykulev Y. Major histocompatibility complex class I-intercellular adhesion molecule-1 association on the surface of target cells: implications for antigen presentation to cytotoxic T lymphocytes. Immunology. 2004;113:460–71.

    PubMed  CAS  Google Scholar 

  96. Lebedeva T, Dustin ML, Sykulev Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol. 2005;17:251–8.

    PubMed  CAS  Google Scholar 

  97. Revy P, Sospedra M, Barbour B, Trautmann A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat Immunol. 2001;2:925–31.

    PubMed  CAS  Google Scholar 

  98. Carpen O, Pallai P, Staunton DE, Springer TA. Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol. 1992;118:1223–34.

    PubMed  CAS  Google Scholar 

  99. Qu B, Pattu V, Junker C, Schwarz EC, Bhat SS, Kummerow C, Marshall M, Matti U, Neumann F, Pfreundschuh M, Becherer U, Rieger H, Rettig J, Hoth M. Docking of lytic granules at the immunological synapse in human CTL requires vti1b-dependent pairing with CD3 endosomes. J Immunol. 2011;186:6894–904.

    PubMed  CAS  Google Scholar 

  100. Yudushkin IA, Vale RD. Imaging T-cell receptor activation reveals accumulation of tyrosine-phosphorylated CD3zeta in the endosomal compartment. Proc Natl Acad Sci USA. 2010;107:22128–33.

    PubMed  CAS  Google Scholar 

  101. Poenie M, Tsien RY, Schmitt-Verhulst A-M. Sequential activation and lethal hit measured by [Ca2+] in individual cytolytic T cells and targets. EMBO J. 1987;6:2223–32.

    PubMed  CAS  Google Scholar 

  102. Semmrich M, Smith A, Feterowski C, Beer S, Engelhardt B, Busch DH, Bartsch B, Laschinger M, Hogg N, Pfeffer K, Holzmann B. Importance of integrin LFA-1 deactivation for the generation of immune responses. J Exp Med. 2005;201:1987–98.

    PubMed  CAS  Google Scholar 

  103. Wiedemann A, Depoil D, Faroudi M, Valitutti S. Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc Natl Acad Sci USA. 2006;103:10985–90.

    PubMed  CAS  Google Scholar 

  104. Sykulev Y. T cell receptor signaling kinetics takes the stage. Sci Signal. 2010;3:pe50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants to Yuri Sykulev (AI52812; CA131973). We are grateful to Larry Stern, Martin Poenie, Pierre Henkart and Philip Norris for critical reading of the manuscript and useful comments. This review is not meant to be comprehensive, but rather pursues a particular focus that reflects the views of the authors on the issues discussed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadia Anikeeva or Yuri Sykulev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikeeva, N., Sykulev, Y. Mechanisms controlling granule-mediated cytolytic activity of cytotoxic T lymphocytes. Immunol Res 51, 183–194 (2011). https://doi.org/10.1007/s12026-011-8252-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8252-8

Keywords