Skip to main content
Log in

miR-144-3p Targets GABRB2 to Suppress Thyroid Cancer Progression In Vitro

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Thyroid cancer, as one of the most common cancers in many countries, has attracted increasing attention, but its pathogenesis is still unclear. This research explored the effects of miR-144-3p and GABRB2 on thyroid cancer cells and the underlying mechanism. Gene expression data was obtained from the GEO database to analyze differential expression of mRNAs and miRNAs in patients with thyroid cancer. CCK-8, transwell, scratch, and flow cytometry assays were performed to detect cell proliferation, invasion, migration, and apoptosis, respectively. Dual-luciferase reporters were used to detect the binding of miR-144-3p to GABRB2. GABRB2 was highly expressed and miR-144-3p was underexpressed in thyroid cancer. In thyroid cancer cells, inhibiting GABRB2 or upregulating miR-144-3p reduced proliferation, invasion, and migration and increased apoptotic rates; GABRB2 overexpression or miR-144-3p inhibition brought about the opposite results. miR-144-3p targeted GABRB2 and negatively regulated its expression. PI3K/AKT activation was reduced in thyroid cancer cells overexpressing miR-144-3p. GABRB2 overexpression partially mitigated the tumor-suppressive effect of miR-144-3p overexpression. In conclusion, miR-144-3p targets GABRB2 to inhibit PI3K/AKT activation, thereby inhibiting the progression of thyroid cancer in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Laha, D., Nilubol, N., & Boufraqech, M. (2020). New therapies for advanced thyroid cancer. Frontiers in Endocrinology, 11, 82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nabhan, F., Dedhia, P. H., & Ringel, M. D. (2021). Thyroid cancer, recent advances in diagnosis and therapy. International Journal of Cancer, 149(5), 984–992.

    Article  PubMed  CAS  Google Scholar 

  3. Pizzato, M., Li, M., Vignat, J., Laversanne, M., Singh, D., La Vecchia, C., & Vaccarella, S. (2022). The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. The Lancet Diabetes & Endocrinology, 10(4), 264–272.

    Article  Google Scholar 

  4. Boucai, L., Zafereo, M., & Cabanillas, M. E. (2024). Thyroid cancer: A review. JAMA, 331(5), 425–435.

    Article  PubMed  CAS  Google Scholar 

  5. Araque, K. A., Gubbi, S., & Klubo-Gwiezdzinska, J. (2020). Updates on the management of thyroid cancer. Hormone and Metabolic Research, 52(8), 562–577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Maillard, P. Y., Baer, S., Schaefer, E., Desnous, B., Villeneuve, N., Lepine, A., Fabre, A., Lacoste, C., El Chehadeh, S., Piton, A., Porter, L. F., Perriard, C., Warde, M. A., Spitz, M. A., Laugel, V., Lesca, G., Putoux, A., Ville, D., Mignot, C., Heron, D., Nabbout, R., Barcia, G., Rio, M., Roubertie, A., Meyer, P., Paquis-Flucklinger, V., Patat, O., Lefranc, J., Gerard, M., Epigen, C., de Bellescize, J., Villard, L., De Saint Martin, A., & Milh, M. (2022). Molecular and clinical descriptions of patients with GABA(A) receptor gene variants (GABRA1, GABRB2, GABRB3, GABRG2): A cohort study, review of literature, and genotype-phenotype correlation. Epilepsia, 63(10), 2519–2533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Belotti, Y., Tolomeo, S., Yu, R., Lim, W. T., & Lim, C. T. (2022) Prognostic neurotransmitter receptors genes are associated with immune response, inflammation and cancer hallmarks in brain tumors. Cancers, 14(10), 2544.

  8. Campos-Parra, A. D., Perez-Quintanilla, M., Martinez-Gutierrez, A. D., Perez-Montiel, D., Coronel-Martinez, J., Millan-Catalan, O., De Leon, D. C., & Perez-Plasencia, C. (2022). Molecular differences between squamous cell carcinoma and adenocarcinoma cervical cancer subtypes: potential prognostic biomarkers. Current Oncology, 29(7), 4689–4702.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Petrini, I., Cecchini, R. L., Mascaro, M., Ponzoni, I., & Carballido, J. A. (2023) Papillary thyroid carcinoma: A thorough bioinformatic analysis of gene expression and clinical data. Genes, 14(6), 1250.

  10. Jin, Y., Jin, W., Zheng, Z., Chen, E., Wang, Q., Wang, Y., Wang, O., & Zhang, X. (2017). GABRB2 plays an important role in the lymph node metastasis of papillary thyroid cancer. Biochemical and Biophysical Research Communications, 492(3), 323–330.

    Article  PubMed  CAS  Google Scholar 

  11. Kargutkar, N., Hariharan, P., & Nadkarni, A. (2023). Dynamic interplay of microRNA in diseases and therapeutic. Clinical Genetics, 103(3), 268–276.

    Article  PubMed  CAS  Google Scholar 

  12. Ho, P. T. B., Clark, I. M., & Le, L. T. T. (2022). MicroRNA-based diagnosis and therapy. International Journal of Molecular Sciences, 23(13), 7167.

  13. Cao, S., Yin, Y., Hu, H., Hong, S., He, W., Lv, W., Liu, R., Li, Y., Yu, S., & Xiao, H. (2023). CircGLIS3 inhibits thyroid cancer invasion and metastasis through miR-146b-3p/AIF1L axis. Cellular Oncology, 46(6), 1777–1789.

    Article  PubMed  CAS  Google Scholar 

  14. Dou, X. L., Xia, F. D., & Li, X. Y. (2023). Circ_0003747 promotes thyroid cancer progression by sponging miR-338-3p to upregulate PLCD3 expression. Epigenetics, 18(1), 2210339.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo, K., Qian, K., Shi, Y., Sun, T., & Wang, Z. (2021). LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death & Disease, 12(12), 1097.

    Article  CAS  Google Scholar 

  16. Xiong, H., Yu, H., Jia, G., Yu, J., Su, Y., Zhang, J., & Zhou, J. (2021). circZFR regulates thyroid cancer progression by the miR-16/MAPK1 axis. Environmental Toxicology, 36(11), 2236–2244.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang, M., Jike, Y., Liu, K., Gan, F., Zhang, K., Xie, M., Zhang, J., Chen, C., Zou, X., Jiang, X., Dai, Y., Chen, W., Qiu, Y., & Bo, Z. (2023). Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Molecular Cancer, 22(1), 113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fang, G., Zhang, C., Liu, Z., Peng, Z., Tang, M., & Xue, Q. (2022). MiR-144-3p inhibits the proliferation and metastasis of lung cancer A549 cells via targeting HGF. Journal of Cardiothoracic Surgery, 17(1), 117.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, M., Liu, Y., Jiang, X., Hang, Y., Wang, H., Liu, H., Chen, Z., & Xiao, Y. (2021). Inhibition of miR-144-3p exacerbates non-small cell lung cancer progression by targeting CEP55. Acta Biochimica et Biophysica Sinica, 53(10), 1398–1407.

    Article  PubMed  CAS  Google Scholar 

  20. Lu, Y., Zhang, B., Wang, B., Wu, D., Wang, C., Gao, Y., Liang, W., Xi, H., Wang, X., & Chen, L. (2021). MiR-144-3p inhibits gastric cancer progression and stemness via directly targeting GLI2 involved in hedgehog pathway. Journal of Translational Medicine, 19(1), 432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu, J., Chou, Z., Li, C., Huang, K., Wang, X., Li, X., Han, C., Al-Danakh, A., Li, X., & Song, X. (2022). ZBTB7A, a miR-144-3p targeted gene, accelerates bladder cancer progression via downregulating HIC1 expression. Cancer Cell International, 22(1), 179.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yi, D., Zhang, D., Zeng, Z., Zhang, S., Li, M., & Zhang, Y. (2022). MicroRNA-144-3p represses the growth and EMT of thyroid cancer via the E2F2/TNIK axis in cells and male BALB/c nude mice. Endocrinology, 163(7), bqac071.

  23. Burja, B., Kuret, T., Janko, T., Topalovic, D., Zivkovic, L., Mrak-Poljsak, K., Spremo-Potparevic, B., Zigon, P., Distler, O., Cucnik, S., Sodin-Semrl, S., Lakota, K., & Frank-Bertoncelj, M. (2019). Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Frontiers in Cardiovascular Medicine, 6, 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jiang, Q., Guan, Y., Zheng, J., & Lu, H. (2023). TBK1 promotes thyroid cancer progress by activating the PI3K/Akt/mTOR signaling pathway. Immunity Inflammation Disease, 11(3), e796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Fagin, J. A., & Nikiforov, Y. E. (2023). Progress in thyroid cancer genomics: A 40-year journey. Thyroid, 33(11), 1271–1286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sun, N., Zhang, L., Zhang, C., & Yuan, Y. (2020). miR-144-3p inhibits cell proliferation of colorectal cancer cells by targeting BCL6 via inhibition of Wnt/beta-catenin signaling. Cellular & Molecular Biology Letters, 25, 19.

    Article  CAS  Google Scholar 

  27. An, C., Hu, Z., Li, Y., Zhao, P., Liu, R., Zhang, Q., Zhu, P., Li, Y., & Wang, Y. (2022). LINC00662 enhances cell progression and stemness in breast cancer by MiR-144-3p/SOX2 axis. Cancer Cell International, 22(1), 184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gao, F., Han, J., Jia, L., He, J., Wang, Y., & Chen, M. (2024). Circ_0001982 aggravates breast cancer development through the circ_0001982-miR-144-3p-GSE1 axis. Journal of Biochemical and Molecular Toxicology, 38(1), e23565.

    Article  PubMed  CAS  Google Scholar 

  29. Li, Y., Hong, X., Zhai, J., Liu, Y., Li, R., Wang, X., Zhang, Y., & Lv, Q. (2023). Novel circular RNA circ-0002727 regulates miR-144-3p/KIF14 pathway to promote lung adenocarcinoma progression. Frontiers in Cell and Developmental Biology, 11, 1249174.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu, S. W., Yang, P., Li, F. N., Dou, R. G., Liu, J. X., & Liu, G. J. (2022). LncRNA B4GALT1-AS1 promotes non-small cell lung cancer cell growth via increasing ZEB1 level by sponging miR-144-3p. Translational Cancer Research, 11(3), 538–547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yuan, H. M., Pu, X. F., Wu, H., & Wu, C. (2023). ENTPD1-AS1-miR-144-3p-mediated high expression of COL5A2 correlates with poor prognosis and macrophage infiltration in gastric cancer. World Journal of Gastrointestinal Oncology, 15(7), 1182–1199.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y., Xie, W., Zheng, W., Qian, X., & Deng, C. (2024). Exosome-mediated circGMPS facilitates the development of gastric cancer cells through miR-144-3p/PUM1. Cytotechnology, 76(1), 53–68.

    Article  PubMed  CAS  Google Scholar 

  33. Yuan, D., Guo, T., Qian, H., Ge, H., Zhao, Y., Huang, A., Wang, X., Cao, X., Zhu, D., He, C., & Yu, H. (2022). Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis. Drug Development Research, 83(6), 1383–1393.

    Article  PubMed  CAS  Google Scholar 

  34. Cui, Z., Wang, Q., Deng, M. H., & Han, Q. L. (2022). LncRNA HCG11 promotes 5-FU resistance of colon cancer cells through reprogramming glucose metabolism by targeting the miR-144-3p-PDK4 axis. Cancer Biomarkers, 34(1), 41–53.

    Article  PubMed  CAS  Google Scholar 

  35. Gao, Z. Y., Liu, H., & Zhang, Z. (2021). miR-144-3p increases radiosensibility of gastric cancer cells by targeting inhibition of ZEB1. Clinical and Translational Oncology, 23(3), 491–500.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, B., Xu, L., Zhang, J., Cheng, X., Xu, Q., Wang, J., & Mao, F. (2020). LncRNA NORAD accelerates the progression and doxorubicin resistance of neuroblastoma through up-regulating HDAC8 via sponging miR-144-3p. Biomedicine & Pharmacotherapy, 129, 110268.

    Article  CAS  Google Scholar 

  37. Wang, P., Yang, Z., Ye, T., Shao, F., Li, J., Sun, N., & He, J. (2020). lncTUG1/miR-144-3p affect the radiosensitivity of esophageal squamous cell carcinoma by competitively regulating c-MET. Journal of Experimental & Clinical Cancer Research, 39(1), 7.

    Article  CAS  Google Scholar 

  38. Liu, F., Zhang, J., Qin, L., Yang, Z., Xiong, J., Zhang, Y., Li, R., Li, S., Wang, H., Yu, B., Zhao, W., Wang, W., Li, Z., & Liu, J. (2018). Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging, 10(12), 3806–3820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barki, M., & Xue, H. (2022). GABRB2, a key player in neuropsychiatric disorders and beyond. Gene, 809, 146021.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, Q. X., Chen, E. D., Cai, Y. F., Li, Q., Jin, Y. X., Jin, W. X., Wang, Y. H., Zheng, Z. C., Xue, L., Wang, O. C., & Zhang, X. H. (2016). A panel of four genes accurately differentiates benign from malignant thyroid nodules. Journal of Experimental & Clinical Cancer Research, 35(1), 169.

    Article  CAS  Google Scholar 

  41. Prete, A., Borges de Souza, P., Censi, S., Muzza, M., Nucci, N., & Sponziello, M. (2020). Update on Fundamental Mechanisms of Thyroid Cancer. Frontiers in Endocrinology, 11, 102.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for all the contributors.

Funding

This research was funded by the grant from Hainan Provincial Natural Science Foundation of China (Grant No. 823MS152).

Author information

Authors and Affiliations

Authors

Contributions

QY and XC conceived the ideas; designed the experiments. XC; DXC; DD; ZT; JCG and WD performed the experiments. XC; DXC; DD; ZT and JCG analyzed the data. QY provided critical materials. ZT; JCG and WD wrote the manuscript. QY supervised the study. All the authors have read and approved the final version for publication.

Corresponding author

Correspondence to Yong Qian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, C., Deng, X., Deng, D. et al. miR-144-3p Targets GABRB2 to Suppress Thyroid Cancer Progression In Vitro. Cell Biochem Biophys 82, 3585–3595 (2024). https://doi.org/10.1007/s12013-024-01446-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-024-01446-y

Keywords

Navigation