Skip to main content

Advertisement

Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome During HIV Infection

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

In the current era of combination antiretroviral therapy (ART), human immunodeficiency virus (HIV)-infected individuals are living longer and healthier lives. Nevertheless, HIV-infected persons are at greater risk for age-related disorders, which have been linked to residual immune dysfunction and inflammation. HIV-infected individuals are almost universally co-infected with cytomegalovirus (CMV) and both viruses are associated with inflammation-related morbidities. Therefore, a detailed investigation of the relationship between CMV and aging-related morbidities emerging during chronic HIV infection is warranted. Here, we review the literature on how CMV co-infection affects HIV infection and host immunity and we discuss the gaps in our knowledge that need elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Palella Jr FJ, Baker RK, Moorman AC, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43:27–34.

    Article  CAS  PubMed  Google Scholar 

  2. Hunt PW. HIV and inflammation: mechanisms and consequences. Curr HIV/AIDS Rep. 2012;9:139–47.

    Article  PubMed  Google Scholar 

  3. Deeks SG, Verdin E, McCune JM. Immunosenescence and HIV. Curr Opin Immunol. 2012;24:501–6.

    Article  CAS  PubMed  Google Scholar 

  4. Unemori P, Leslie KS, Hunt PW, et al. Immunosenescence is associated with presence of Kaposi’s sarcoma in antiretroviral treated HIV infection. AIDS. 2013;27:1735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Appay V, Fastenackels S, Katlama C, et al. Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS. 2011;25:1813–22.

    Article  CAS  PubMed  Google Scholar 

  6. Durier N, Ananworanich J, Apornpong T, et al. Cytomegalovirus viremia in Thai HIV-infected patients on antiretroviral therapy: prevalence and associated mortality. Clin Infect Dis. 2013;57:147–55.

    Article  CAS  PubMed  Google Scholar 

  7. Fishman JA. Overview: cytomegalovirus and the herpesviruses in transplantation. Am J Trans Off J Am Soc Trans Am Soc Trans Surg. 2013;13:1–8.

    Article  CAS  Google Scholar 

  8. Richman DD. Clinical Virology. ASM Press; 3 edition (January 1, 2009). 1408 pp.

  9. Gianella S, Massanella M, Wertheim JO, Smith DM. The sordid affair between human herpesvirus and human immunodeficiency virus. J Infect Dis. 2015;212(6):845–52.

  10. Sinclair J, Sissons P. Latency and reactivation of human cytomegalovirus. J Gen Virol. 2006;87:1763–79.

    Article  CAS  PubMed  Google Scholar 

  11. Barnabas RV, Celum C. Infectious co-factors in HIV-1 transmission herpes simplex virus type-2 and HIV-1: new insights and interventions. Curr HIV Res. 2012;10:228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gianella S, Morris SR, Anderson C, et al. Herpesviruses and HIV-1 drug resistance mutations influence the virologic and immunologic milieu of the male genital tract. AIDS. 2013;27:39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lisco A, Munawwar A, Introini A, et al. Semen of HIV-1-infected individuals: local shedding of herpesviruses and reprogrammed cytokine network. J Infect Dis. 2012;205:97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gianella S, Scheffler K, Mehta SR, et al. Seminal shedding of CMV and HIV transmission among men who have sex with Men. Int J Environ Res Publ Health. 2015;12:7585–92.

    Article  Google Scholar 

  15. Mitchell C, Hitti J, Paul K, et al. Cervicovaginal shedding of HIV type 1 is related to genital tract inflammation independent of changes in vaginal microbiota. AIDS Res Hum Retrovir. 2011;27:35–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schoenfisch AL, Dollard SC, Amin M, et al. Cytomegalovirus (CMV) shedding is highly correlated with markers of immunosuppression in CMV-seropositive women. J Med Microbiol. 2011;60:768–74.

    Article  PubMed  Google Scholar 

  17. Mostad SB, Kreiss JK, Ryncarz AJ, et al. Cervical shedding of cytomegalovirus in human immunodeficiency virus type 1-infected women. J Med Virol. 1999;59:469–73.

    Article  CAS  PubMed  Google Scholar 

  18. Casper C, Krantz EM, Corey L, et al. Valganciclovir for suppression of human herpesvirus-8 replication: a randomized, double-blind, placebo-controlled, crossover trial. J Infect Dis. 2008;198:23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hunt PW, Martin JN, Sinclair E, et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis. 2011;203:1474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gianella S, Anderson CM, Vargas MV, et al. CMV DNA in semen and blood is associated with higher levels of proviral HIV DNA. J Infect Dis. 2012;207:898–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gianella S, Anderson C, Var SR, et al. Detectable CMVin PBMC Is Associated with Slower HIV DNA Decay during Suppressive ART. 22th Conference on Retroviruses and opportunistic infections (CROI). Seattle, 2015. Under Review.

  22. Reitter A, Buxmann H, Haberl AE, et al. Incidence of CMV co-infection in HIV-positive women and their neonates in a tertiary referral centre: a cohort study. Med Microbiol Immunol. 2015. doi:10.1007/s00430-015-0427-9.

  23. Sylwester AW, Mitchell BL, Edgar JB, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202:673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Margolick JB, Bream JH, et al. Heterogeneity of CD4+ and CD8+ T-cell responses to cytomegalovirus in HIV-infected and HIV-uninfected men who have sex with men. J Infect Dis. 2014;210:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stone SF, Price P, Khan N, Moss PA, French MA. HIV patients on antiretroviral therapy have high frequencies of CD8 T cells specific for Immediate Early protein-1 of cytomegalovirus. AIDS. 2005;19:555–62.

    Article  PubMed  Google Scholar 

  26. Naeger DM, Martin JN, Sinclair E, et al. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One. 2010;5:e8886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Stern-Ginossar N, Weisburd B, Michalski A, et al. Decoding human cytomegalovirus. Science. 2012;338:1088–93. The results of this study revealed an unanticipated complexity to the HCMV coding capacity and illustrate the role of regulated changes in transcript start sites in generating this complexity.

    Article  CAS  PubMed  Google Scholar 

  28. Soderberg-Naucler C. Treatment of cytomegalovirus infections beyond acute disease to improve human health. Expert Rev Anti-Infect Ther. 2014;12:211–22.

    Article  PubMed  CAS  Google Scholar 

  29. Lisco A, Vanpouille C, Margolis L. War and peace between microbes: HIV-1 interactions with coinfecting viruses. Cell Host Microbe. 2009;6:403–8.

    Article  CAS  PubMed  Google Scholar 

  30. Almeida GD, Porada CD, St Jeor S, Ascensao JL. Human cytomegalovirus alters interleukin-6 production by endothelial cells. Blood. 1994;83:370–6.

    CAS  PubMed  Google Scholar 

  31. Suni MA, Ghanekar SA, Houck DW, et al. CD4(+)CD8(dim) T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens. Eur J Immunol. 2001;31:2512–20.

    Article  CAS  PubMed  Google Scholar 

  32. Iwamoto GK, Monick MM, Clark BD, Auron PE, Stinski MF, Hunninghake GW. Modulation of interleukin 1 beta gene expression by the immediate early genes of human cytomegalovirus. J Clin Invest. 1990;85:1853–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saghafian-Hedengren S, Sohlberg E, Theorell J, et al. Epstein-Barr virus coinfection in children boosts cytomegalovirus-induced differentiation of natural killer cells. J Virol. 2013;87:13446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fawaz LM, Sharif-Askari E, Menezes J. Up-regulation of NK cytotoxic activity via IL-15 induction by different viruses: a comparative study. J Immunol. 1999;163:4473–80.

    CAS  PubMed  Google Scholar 

  35. Overwijk WW, Schluns KS. Functions of gammaC cytokines in immune homeostasis: current and potential clinical applications. Clin Immunol. 2009;132:153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang WL, Baumgarth N, Yu D, Barry PA. Human cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol. 2004;78:8720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A. 2000;97:1695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soderberg-Naucler C. Human cytomegalovirus persists in its host and attacks and avoids elimination by the immune system. Crit Rev Immunol. 2006;26:231–64.

    Article  PubMed  Google Scholar 

  39. Powers C, DeFilippis V, Malouli D, Fruh K. Cytomegalovirus immune evasion. Curr Top Microbiol Immunol. 2008;325:333–59.

    CAS  PubMed  Google Scholar 

  40. Dan J, Massanella M, Spina C, et al. Effect of cytomegalovirus and HIV transcription on CD57 and PD-1 T cell expression during suppressive ART. JAIDS. 2016. In press.

  41. Johnson DC, Hegde NR. Inhibition of the MHC class II antigen presentation pathway by human cytomegalovirus. Curr Top Microbiol Immunol. 2002;269:101–15.

    CAS  PubMed  Google Scholar 

  42. Shive CL, Mudd JC, Funderburg NT, et al. Inflammatory cytokines drive CD4+ T-cell cycling and impaired responsiveness to interleukin 7: implications for immune failure in HIV disease. J Infect Dis. 2014;210:619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Biancotto A, Grivel JC, Iglehart SJ, et al. Abnormal activation and cytokine spectra in lymph nodes of people chronically infected with HIV-1. Blood. 2007;109:4272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farrell HE, Davis-Poynter N, Bruce K, et al. Lymph node macrophages restrict murine cytomegalovirus dissemination. J Virol. 2015;89:7147–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Torti N, Walton SM, Brocker T, Rulicke T, Oxenius A. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog. 2011;7:e1002313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Torti N, Oxenius A. T cell memory in the context of persistent herpes viral infections. Viruses. 2012;4:1116–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lang A, Brien JD, Nikolich-Zugich J. Inflation and long-term maintenance of CD8 T cells responding to a latent herpesvirus depend upon establishment of latency and presence of viral antigens. J Immunol. 2009;183:8077–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Remmerswaal EB, Klarenbeek PL, Alves NL, et al. Clonal evolution of CD8+ T cell responses against latent viruses: relationship among phenotype, localization, and function. J Virol. 2015;89:568–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fletcher JM, Vukmanovic-Stejic M, Dunne PJ, et al. Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol. 2005;175:8218–25.

    Article  CAS  PubMed  Google Scholar 

  50. Almanzar G, Schwaiger S, Jenewein B, et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol. 2005;79:3675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cicin-Sain L, Brien JD, Uhrlaub JL, Drabig A, Marandu TF, Nikolich-Zugich J. Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog. 2012;8:e1002849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mekker A, Tchang VS, Haeberli L, Oxenius A, Trkola A, Karrer U. Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog. 2012;8:e1002850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smithey MJ, Li G, Venturi V, Davenport MP, Nikolich-Zugich J. Lifelong persistent viral infection alters the naive T cell pool, impairing CD8 T cell immunity in late life. J Immunol. 2012;189:5356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Leeuwen EM, Koning JJ, Remmerswaal EB, van Baarle D, van Lier RA, ten Berge IJ. Differential usage of cellular niches by cytomegalovirus versus EBV- and influenza virus-specific CD8+ T cells. J Immunol. 2006;177:4998–5005.

    Article  PubMed  Google Scholar 

  55. Remmerswaal EB, Havenith SH, Idu MM, et al. Human virus-specific effector-type T cells accumulate in blood but not in lymph nodes. Blood. 2012;119:1702–12.

    Article  CAS  PubMed  Google Scholar 

  56. Arens R, Remmerswaal EB, Bosch JA, van Lier RA. 5(th) International Workshop on CMV and Immunosenescence—a shadow of cytomegalovirus infection on immunological memory. Eur J Immunol. 2015;45:954–7.

    Article  CAS  PubMed  Google Scholar 

  57. Sauce D, Larsen M, Fastenackels S, et al. Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest. 2009;119:3070–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harris JM, Hazenberg MD, Poulin JF, et al. Multiparameter evaluation of human thymic function: interpretations and caveats. Clin Immunol. 2005;115:138–46.

    Article  CAS  PubMed  Google Scholar 

  59. Lichtner M, Cicconi P, Vita S, et al. Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J Infect Dis. 2015;211:178–86.

    Article  PubMed  Google Scholar 

  60. Brodin P, Jojic V, Gao T, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell. 2015;160:37–47. By studying twins, this study found that non-heritable influences (inclusive CMV serostatus) explain much of the variation in immune measurements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev. 2000;121:187–201.

    Article  CAS  PubMed  Google Scholar 

  62. Strindhall J, Nilsson BO, Lofgren S, et al. No immune risk profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol. 2007;42:753–61.

    Article  CAS  PubMed  Google Scholar 

  63. Dowd JB, Aiello AE, Alley DE. Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect. 2009;137:58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One. 2011;6:e16103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Strandberg TE, Pitkala KH, Tilvis RS. Cytomegalovirus antibody level and mortality among community-dwelling older adults with stable cardiovascular disease. JAMA. 2009;301:380–2.

    Article  CAS  PubMed  Google Scholar 

  66. Parrinello CM, Sinclair E, Landay AL, et al. Cytomegalovirus immunoglobulin G antibody is associated with subclinical carotid artery disease among HIV-infected women. J Infect Dis. 2012;205:1788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gianella S, Morris SR, Tatro E, et al. Virologic Correlates of Anti-CMV IgG Levels in HIV-1 Infected Men. J Infect Dis. 2014;209(3):452–6.

  68. Hadrup SR, Strindhall J, Kollgaard T, et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol. 2006;176:2645–53.

    Article  CAS  PubMed  Google Scholar 

  69. Furman D, Jojic V, Sharma S, et al. Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med. 2015;7:281ra43. This study found that latent CMV infection could be beneficial in that it enhanced the development of an influenza vaccine-specific antibody response in young, but not aged, individuals.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Skolnik PR, Kosloff BR, Hirsch MS. Bidirectional interactions between human immunodeficiency virus type 1 and cytomegalovirus. J Infect Dis. 1988;157:508–14.

    Article  CAS  PubMed  Google Scholar 

  71. Yuan R, Bohan C, Shiao FC, Robinson R, Kaplan HJ, Srinivasan A. Activation of HIV LTR-directed expression: analysis with pseudorabies virus immediate early gene. Virology. 1989;172:92–9.

    Article  CAS  PubMed  Google Scholar 

  72. Lisco A, Vanpouille C, Margolis L. Coinfecting viruses as determinants of HIV disease. Curr HIV/AIDS Rep. 2009;6:5–12.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Johnson EL, Howard CL, Thurman J, Pontiff K, Johnson ES, Chakraborty R. CMV upregulates expression of CCR5 in central memory TCM cord blood mononuclear cells which may facilitate in utero HIV-1 transmission. J Infect Dis. 2015;211(2):187–96.

  74. Stoddart CA, Keir ME, McCune JM. IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog. 2010;6:e1000766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gianella S, Massanella M, Richman DD, et al. Cytomegalovirus replication in semen is associated with higher levels of proviral HIV DNA and CD4+ T cell activation during antiretroviral treatment. J Virol. 2014;88:7818–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gianella S, Morris SR, Vargas MV, et al. The role of seminal shedding of herpesviruses in HIV-1 transmission. J Infect Dis. 2012;207:257–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gianella S, Strain MC, Rought SE, et al. Associations between virologic and immunologic dynamics in blood and in the male genital tract. J Virol. 2012;86:1307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim HN, Wang J, Hughes J, et al. Effect of acyclovir on HIV-1 set point among herpes simplex virus type 2-seropositive persons during early HIV-1 infection. J Infect Dis. 2010;202:734–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gianella S, Smith DM, Vargas MV, et al. Shedding of HIV and human herpesviruses in the semen of effectively treated HIV-1-infected men who have sex with men. Clin Infect Dis. 2013;57:441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Webster A, Lee CA, Cook DG, et al. Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection. Lancet. 1989;2:63–6.

    Article  CAS  PubMed  Google Scholar 

  81. Detels R, Leach CT, Hennessey K, et al. Persistent cytomegalovirus infection of semen increases risk of AIDS. J Infect Dis. 1994;169:766–8.

    Article  CAS  PubMed  Google Scholar 

  82. Deayton J, Mocroft A, Wilson P, Emery VC, Johnson MA, Griffiths PD. Loss of cytomegalovirus (CMV) viraemia following highly active antiretroviral therapy in the absence of specific anti-CMV therapy. AIDS. 1999;13:1203–6.

    Article  CAS  PubMed  Google Scholar 

  83. Freeman ML, Mudd JC, Shive CL, et al. M CD8 T cell expansion and inflammation linked to CMV co-infection in ART-treated HIV infection. Clin Infect Dis. 2016;62(3):392–6.

  84. Barrett L, Stapleton SN, Fudge NJ, Grant MD. Immune resilience in HIV-infected individuals seronegative for cytomegalovirus. AIDS. 2014;28:2045–9.

    Article  CAS  PubMed  Google Scholar 

  85. Serrano-Villar S, Sainz T, Lee SA, et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014;10:e1004078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lee SA, Sinclair E, Hatano H, et al. Impact of HIV on CD8+ T cell CD57 expression is distinct from that of CMV and aging. PLoS One. 2014;9:e89444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Moss P, Khan N. CD8(+) T-cell immunity to cytomegalovirus. Hum Immunol. 2004;65:456–64.

    Article  CAS  PubMed  Google Scholar 

  88. Khan N, Shariff N, Cobbold M, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169:1984–92.

    Article  CAS  PubMed  Google Scholar 

  89. Khan N, Cobbold M, Cummerson J, Moss PA. Persistent viral infection in humans can drive high frequency low-affinity T-cell expansions. Immunology. 2010;131:537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ouyang Q, Wagner WM, Zheng W, Wikby A, Remarque EJ, Pawelec G. Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol. 2004;39:607–13.

    Article  CAS  PubMed  Google Scholar 

  91. Chidrawar S, Khan N, Wei W, et al. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol. 2009;155:423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pawelec G, Derhovanessian E. Role of CMV in immune senescence. Virus Res. 2011;157:175–9.

    Article  CAS  PubMed  Google Scholar 

  93. Letendre S, Bharti A, Perez-Valero I, et al. Higher Anti-CMV IgG Concentrations are Associated with Worse Neurocognitive Functioning in People Living with HIV Disease. Under review 2013.

  94. Bruning JH, Persoons M, Lemstrom K, Stals FS, De Clercq E, Bruggeman CA. Enhancement of transplantation-associated atherosclerosis by CMV, which can be prevented by antiviral therapy in the form of HPMPC. Trans Int Off J Eur Soc Organ Trans. 1994;7 Suppl 1:S365–70.

    Google Scholar 

  95. Watkins RR, Lemonovich TL, Razonable RR. Immune response to CMV in solid organ transplant recipients: current concepts and future directions. Expert Rev Clin Immunol. 2012;8:383–93.

    Article  CAS  PubMed  Google Scholar 

  96. Hsue PY, Hunt PW, Sinclair E, et al. Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. AIDS. 2006;20:2275–83.

    Article  PubMed  Google Scholar 

  97. Barrett L, Fowke KR, Grant MD. Cytomegalovirus, aging, and HIV: a perfect storm. AIDS Rev. 2012;14:159–67.

    PubMed  Google Scholar 

  98. Bolovan-Fritts CA, Spector SA. Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood. 2008;111:175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bolovan-Fritts CA, Trout RN, Spector SA. High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage. Blood. 2007;110:1857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Combadiere B, Faure S, Autran B, Debre P, Combadiere C. The chemokine receptor CX3CR1 controls homing and anti-viral potencies of CD8 effector-memory T lymphocytes in HIV-infected patients. AIDS. 2003;17:1279–90.

    Article  CAS  PubMed  Google Scholar 

  101. Marty FM, Winston DJ, Rowley SD, et al. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med. 2013;369:1227–36.

    Article  CAS  PubMed  Google Scholar 

  102. Verghese PS, Schleiss MR. Letermovir treatment of human cytomegalovirus infection antiinfective agent. Drugs Future. 2013;38:291–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jones TR, Sun L. Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J Virol. 1997;71:2970–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci U S A. 1996;93:11327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ahn K, Gruhler A, Galocha B, et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity. 1997;6:613–21.

    Article  CAS  PubMed  Google Scholar 

  106. Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci U S A. 1997;94:6904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol. 1995;69:4830–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Park B, Spooner E, Houser BL, Strominger JL, Ploegh HL. The HCMV membrane glycoprotein US10 selectively targets HLA-G for degradation. J Exp Med. 2010;207:2033–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tomazin R, Boname J, Hegde NR, et al. Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med. 1999;5:1039–43.

    Article  CAS  PubMed  Google Scholar 

  110. Hegde NR, Tomazin RA, Wisner TW, et al. Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virol. 2002;76:10929–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Miller DM, Zhang Y, Rahill BM, Waldman WJ, Sedmak DD. Human cytomegalovirus inhibits IFN-alpha-stimulated antiviral and immunoregulatory responses by blocking multiple levels of IFN-alpha signal transduction. J Immunol. 1999;162:6107–13.

    CAS  PubMed  Google Scholar 

  112. Paulus C, Krauss S, Nevels M. A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc Natl Acad Sci U S A. 2006;103:3840–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Taylor RT, Bresnahan WA. Human cytomegalovirus IE86 attenuates virus- and tumor necrosis factor alpha-induced NFkappaB-dependent gene expression. J Virol. 2006;80:10763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Beck S, Barrell BG. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature. 1988;331:269–72.

    Article  CAS  PubMed  Google Scholar 

  115. Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001;14:123–33.

    Article  CAS  PubMed  Google Scholar 

  116. Chalupny NJ, Rein-Weston A, Dosch S, Cosman D. Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun. 2006;346:175–81.

    Article  CAS  PubMed  Google Scholar 

  117. Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA. Science. 2007;317:376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tomasec P, Wang EC, Davison AJ, et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol. 2005;6:181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arnon TI, Achdout H, Levi O, et al. Inhibition of the NKp30 activating receptor by pp 65 of human cytomegalovirus. Nat Immunol. 2005;6:515–23.

    Article  CAS  PubMed  Google Scholar 

  120. Fielding CA, Aicheler R, Stanton RJ, et al. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog. 2014;10:e1004058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wyrwicz LS, Rychlewski L. Cytomegalovirus immediate early gene UL37 encodes a novel MHC-like protein. Acta Biochim Pol. 2008;55:67–73.

    CAS  PubMed  Google Scholar 

  122. Knoblach T, Grandel B, Seiler J, Nevels M, Paulus C. Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-gamma. PLoS Pathog. 2011;7:e1002016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Luttichau HR. The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. J Biol Chem. 2010;285:9137–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Penfold ME, Dairaghi DJ, Duke GM, et al. Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci U S A. 1999;96:9839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 1993;72:415–25.

    Article  CAS  PubMed  Google Scholar 

  126. Benedict CA, Butrovich KD, Lurain NS, et al. Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J Immunol. 1999;162:6967–70.

    CAS  PubMed  Google Scholar 

  127. Zhu H, Shen Y, Shenk T. Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol. 1995;69:7960–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chiou SH, Yang YP, Lin JC, et al. The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. J Immunol. 2006;177:6199–206.

    Article  CAS  PubMed  Google Scholar 

  129. Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, Goldmacher VS. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A. 2001;98:7829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Goldmacher VS, Bartle LM, Skaletskaya A, et al. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A. 1999;96:12536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Smith W, Tomasec P, Aicheler R, et al. Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host Microbe. 2013;13:324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science. 2007;316:1345–8.

    Article  CAS  PubMed  Google Scholar 

  133. Iwamoto GK, Konicek SA. Cytomegalovirus immediate early genes upregulate interleukin-6 gene expression. J Investig Med. 1997;45:175–82.

    CAS  PubMed  Google Scholar 

  134. Smith PD, Saini SS, Raffeld M, Manischewitz JF, Wahl SM. Cytomegalovirus induction of tumor necrosis factor-alpha by human monocytes and mucosal macrophages. J Clin Invest. 1992;90:1642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Veterans Affairs and grants from the National Institutes of Health: AI43638, AI100665, MH097520, DA034978, AI036214, AI007384, AI027763, AI106039, AI074621, AI110181, 7-UM1 AI068636-07, AI-36219, P30-AI027763, amfAR grant 108537 with support from FAIR, UL1TR000100, the James B. Pendleton Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Gianella.

Ethics declarations

Conflict of Interest

Michael L. Freeman, Michael M. Lederman, and Sara Gianella declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeman, M.L., Lederman, M.M. & Gianella, S. Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome During HIV Infection. Curr HIV/AIDS Rep 13, 10–19 (2016). https://doi.org/10.1007/s11904-016-0297-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0297-9

Keywords