Skip to main content

Advertisement

Does Nutrient Sensing Determine How We “See” Food?

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The ability to “see” both incoming and circulating nutrients plays an essential role in the maintenance of energy homeostasis. As such, nutrient-sensing mechanisms in both the gastrointestinal tract and the brain have been implicated in the regulation of energy intake and glucose homeostasis. The intestinal wall is able to differentiate individual nutrients through sensory machinery expressed in the mucosa and provide feedback signals, via local gut peptide action, to maintain energy balance. Furthermore, both the hypothalamus and hindbrain detect circulating nutrients and respond by controlling energy intake and glucose levels. Conversely, nutrient sensing in the intestine plays a role in stimulating food intake and preferences. In this review, we highlight the emerging evidence for the regulation of energy balance through nutrient-sensing mechanisms in the intestine and the brain, and how disruption of these pathways could result in the development of obesity and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav. 2004;81(2):249–73.

    CAS  PubMed  Google Scholar 

  2. Duca FA, Yue JT. Fatty acid sensing in the gut and the hypothalamus: in vivo and in vitro perspectives. Mol Cell Endocrinol. 2014.

  3. Sidhu SS, Thompson DG, Warhurst G, et al. Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. J Physiol. 2000;528(Pt 1):165–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Liou AP, Lu X, Sei Y, et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology. 2011;140(3):903–12.

    CAS  PubMed  Google Scholar 

  5. Powley TL, Spaulding RA, Haglof SA. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol. 2011;519(4):644–60.

    PubMed Central  PubMed  Google Scholar 

  6. Randich A, Tyler WJ, Cox JE, et al. Responses of celiac and cervical vagal afferents to infusions of lipids in the jejunum or ileum of the rat. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R34–43.

    CAS  PubMed  Google Scholar 

  7. Webster WA, Beyak MJ. The long chain fatty acid oleate activates mouse intestinal afferent nerves in vitro. Can J Physiol Pharmacol. 2013;91(5):375–9.

    CAS  PubMed  Google Scholar 

  8. Ritter RC, Covasa M, Matson CA. Cholecystokinin: proofs and prospects for involvement in control of food intake and body weight. Neuropeptides. 1999;33(5):387–99.

    CAS  PubMed  Google Scholar 

  9. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes. 2008;57(9):2280–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11(1):90–4.

    CAS  PubMed  Google Scholar 

  11. Sundaresan S, Shahid R, Riehl TE, et al. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J. 2013;27(3):1191–202. This study is the first to show that CCK release is partially mediated by CD36 in vivo, elucidating EEC lipid sensing mechanisms upstream of lipid-induced CCK release.

  12. Cote CD, Zadeh-Tahmasebi M, Rasmussen BA, et al. Hormonal signaling in the gut. J Biol Chem. 2014;289(17):11642–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Dailey MJ, Moghadam AA, Moran TH. Jejunal linoleic acid infusions require GLP-1 receptor signaling to inhibit food intake: implications for the effectiveness of Roux-en-Y gastric bypass. Am J Physiol Endocrinol Metab. 2011;301(6):E1184–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Burton-Freeman B, Gietzen DW, Schneeman BO. Meal pattern analysis to investigate the satiating potential of fat, carbohydrate, and protein in rats. Am J Physiol. 1997;273(6 Pt 2):R1916–22.

    CAS  PubMed  Google Scholar 

  15. Breen DM, Rasmussen BA, Kokorovic A, et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18(6):950–5. This study shows for the first time that jejunal glucose and lipid sensing mechanisms lower glucose production and that these jejunal nutrient sensing mechanisms are necessary for DJB surgery to improve glycemia in diabetic rodents, highlighting important therapeutic relevance for intestinal nutrient sensing mechanisms.

  16. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

    CAS  PubMed  Google Scholar 

  17. Hayes MR. Neuronal and intracellular signaling pathways mediating GLP-1 energy balance and glycemic effects. Physiol Behav. 2012;106(3):413–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology. 2009;150(4):1680–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab. 2006;290(3):E550–9.

    CAS  PubMed  Google Scholar 

  20. Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104(38):15069–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Parker HE, Habib AM, Rogers GJ, et al. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia. 2009;52(2):289–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Tolhurst G, Reimann F, Gribble FM. Intestinal sensing of nutrients. Handb Exp Pharmacol. 2012;209:309–35.

    CAS  PubMed  Google Scholar 

  23. Reimann F, Habib AM, Tolhurst G, et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 2008;8(6):532–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Moriya R, Shirakura T, Ito J, et al. Activation of sodium-glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. Am J Physiol Endocrinol Metab. 2009;297(6):E1358–65.

    CAS  PubMed  Google Scholar 

  25. Gorboulev V, Schurmann A, Vallon V, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012;61(1):187–96. This study highlights SGLT1 glucose transporter as a potential mediator in glucose-induced incretin secretion.

  26. Perez C, Lucas F, Sclafani A. Devazepide, a CCK(A) antagonist, attenuates the satiating but not the preference conditioning effects of intestinal carbohydrate infusions in rats. Pharmacol Biochem Behav. 1998;59(2):451–7.

    CAS  PubMed  Google Scholar 

  27. Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides. 2001;22(8):1339–48.

    CAS  PubMed  Google Scholar 

  28. Yox DP, Ritter RC. Capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1988;255(4 Pt 2):R569–74.

    CAS  PubMed  Google Scholar 

  29. Meyer JH, Hlinka M, Tabrizi Y, et al. Chemical specificities and intestinal distributions of nutrient-driven satiety. Am J Physiol. 1998;275(4 Pt 2):R1293–307.

    CAS  PubMed  Google Scholar 

  30. Liou AP, Chavez DI, Espero E, et al. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G895–902.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Darcel NP, Liou AP, Tome D, et al. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1. J Nutr. 2005;135(6):1491–5.

    CAS  PubMed  Google Scholar 

  32. Nemoz-Gaillard E, Bernard C, Abello J, et al. Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells. Endocrinology. 1998;139(3):932–8.

    CAS  PubMed  Google Scholar 

  33. Liou AP, Sei Y, Zhao X, et al. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol. 2011;300(4):G538–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Blouet C, Mariotti F, Azzout-Marniche D, et al. The reduced energy intake of rats fed a high-protein low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control. J Nutr. 2006;136(7):1849–54.

    CAS  PubMed  Google Scholar 

  35. Gannon MC, Nuttall FQ, Saeed A, et al. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am J Clin Nutr. 2003;78(4):734–41.

    CAS  PubMed  Google Scholar 

  36. Akhavan T, Luhovyy BL, Brown PH, et al. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am J Clin Nutr. 2010;91(4):966–75.

    CAS  PubMed  Google Scholar 

  37. Douglas BR, Woutersen RA, Jansen JB, et al. The influence of different nutrients on plasma cholecystokinin levels in the rat. Experientia. 1988;44(1):21–3.

    CAS  PubMed  Google Scholar 

  38. van der Klaauw AA, Keogh JM, Henning E, et al. High protein intake stimulates postprandial GLP1 and PYY release. Obesity (Silver Spring). 2013;21(8):1602–7.

    Google Scholar 

  39. Seimon RV, Feltrin KL, Meyer JH, et al. Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R912–20.

    CAS  PubMed  Google Scholar 

  40. Ryan AT, Luscombe-Marsh ND, Saies AA, et al. Effects of intraduodenal lipid and protein on gut motility and hormone release, glycemia, appetite, and energy intake in lean men. Am J Clin Nutr. 2013;98(2):300–11. This study assesses the gut peptide response to intraduodenal nutrient infusion in human subjects, as opposed to the numerous studies of nutrient infusion in rodents. Further, this study shows important differences gut peptide responses to different types of nutrients.

  41. Brennan IM, Luscombe-Marsh ND, Seimon RV, et al. Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. Am J Physiol Gastrointest Liver Physiol. 2012;303(1):G129–40.

    CAS  PubMed  Google Scholar 

  42. Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11(3):320–7.

    CAS  PubMed  Google Scholar 

  43. Obici S, Feng Z, Morgan K, et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51(2):271–5.

    CAS  PubMed  Google Scholar 

  44. Wang R, Cruciani-Guglielmacci C, Migrenne S, et al. Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol. 2006;95(3):1491–8.

    CAS  PubMed  Google Scholar 

  45. Jo YH, Su Y, Gutierrez-Juarez R, et al. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol. 2009;101(5):2305–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Picard A, Rouch C, Kassis N, et al. Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab. 2014;3(2):167–76. This study is the first to identify that the hippocampus can sense lipids via LPL activity to regulate energy homeostasis, supporting a role for extra-hypothalamic regions to sense nutrients.

  47. Le Foll C, Dunn-Meynell A, Musatov S, et al. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes. 2013;62(8):2709–16.

    PubMed Central  PubMed  Google Scholar 

  48. Moulle VS, Le Foll C, Philippe E, et al. Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats. PLoS One. 2013;8(9):e74021.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Wang H, Astarita G, Taussig MD, et al. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab. 2011;13(1):105–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Obici S, Feng Z, Arduini A, et al. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med. 2003;9(6):756–61.

    CAS  PubMed  Google Scholar 

  51. Ross R, Wang PY, Chari M, et al. Hypothalamic protein kinase C regulates glucose production. Diabetes. 2008;57(8):2061–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Guzman M, Blazquez C. Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab. 2001;12(4):169–73.

    CAS  PubMed  Google Scholar 

  53. Auestad N, Korsak RA, Morrow JW, et al. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem. 1991;56(4):1376–86.

    CAS  PubMed  Google Scholar 

  54. Schonfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab. 2013;33(10):1493–9.

    PubMed Central  PubMed  Google Scholar 

  55. Le Foll C, Irani BG, Magnan C, et al. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R655–64.

    PubMed Central  PubMed  Google Scholar 

  56. Thorens B. Sensing of glucose in the brain. Handb Exp Pharmacol. 2012;209:277–94.

    CAS  PubMed  Google Scholar 

  57. Kurata K, Fujimoto K, Sakata T, et al. D-glucose suppression of eating after intra-third ventricle infusion in rat. Physiol Behav. 1986;37(4):615–20.

    CAS  PubMed  Google Scholar 

  58. Lam TK, Gutierrez-Juarez R, Pocai A, et al. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309(5736):943–7.

    CAS  PubMed  Google Scholar 

  59. Borg WP, Sherwin RS, During MJ, et al. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes. 1995;44(2):180–4.

    CAS  PubMed  Google Scholar 

  60. Ritter S, Dinh TT, Zhang Y. Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res. 2000;856(1–2):37–47.

    CAS  PubMed  Google Scholar 

  61. Edmonds BK, Edwards GL. Dorsomedial hindbrain participation in glucoprivic feeding response to 2DG but not 2DG-induced hyperglycemia or activation of the HPA axis. Brain Res. 1998;801(1–2):21–8.

    CAS  PubMed  Google Scholar 

  62. Ritter RC, Slusser PG, Stone S. Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science. 1981;213(4506):451–2.

    CAS  PubMed  Google Scholar 

  63. Ibrahim N, Bosch MA, Smart JL, et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology. 2003;144(4):1331–40.

    CAS  PubMed  Google Scholar 

  64. Muroya S, Yada T, Shioda S, et al. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci Lett. 1999;264(1–3):113–6.

    CAS  PubMed  Google Scholar 

  65. Leloup C, Arluison M, Lepetit N, et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res. 1994;638(1–2):221–6.

    CAS  PubMed  Google Scholar 

  66. Bady I, Marty N, Dallaporta M, et al. Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes. 2006;55(4):988–95.

    CAS  PubMed  Google Scholar 

  67. Mounien L, Marty N, Tarussio D, et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J. 2010;24(6):1747–58.

    CAS  PubMed  Google Scholar 

  68. Lamy CM, Sanno H, Labouebe G, et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab. 2014;19(3):527–38. This study characterizes a population of glucose-inhibited GLUT2 neurons in the NTS that sense hypoglycemia to trigger glucagon secretion. These results could help elucidate mechanisms underlying a defective counterregulatory response in insulin-treated diabetes.

  69. Dunn-Meynell AA, Routh VH, Kang L, et al. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes. 2002;51(7):2056–65.

    CAS  PubMed  Google Scholar 

  70. Stanley S, Domingos AI, Kelly L, et al. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell Metab. 2013;18(4):596–607.

    CAS  PubMed  Google Scholar 

  71. Kang L, Dunn-Meynell AA, Routh VH, et al. Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes. 2006;55(2):412–20.

    CAS  PubMed  Google Scholar 

  72. Levin BE, Becker TC, Eiki J, et al. Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia. Diabetes. 2008;57(5):1371–9.

    CAS  PubMed  Google Scholar 

  73. Karschin A, Brockhaus J, Ballanyi K. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J Physiol. 1998;509(Pt 2):339–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Miki T, Liss B, Minami K, et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci. 2001;4(5):507–12.

    CAS  PubMed  Google Scholar 

  75. Fioramonti X, Lorsignol A, Taupignon A, et al. A new ATP-sensitive K+ channel-independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus. Diabetes. 2004;53(11):2767–75.

    CAS  PubMed  Google Scholar 

  76. O'Malley D, Reimann F, Simpson AK, et al. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes. 2006;55(12):3381–6.

    PubMed Central  PubMed  Google Scholar 

  77. Ren X, Zhou L, Terwilliger R, et al. Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci. 2009;3:12.

    PubMed Central  PubMed  Google Scholar 

  78. Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 2012;32(7):1152–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Marty N, Dallaporta M, Foretz M, et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest. 2005;115(12):3545–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Cota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312(5775):927–30.

    CAS  PubMed  Google Scholar 

  81. Blouet C, Jo YH, Li X, et al. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci. 2009;29(26):8302–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012;16(5):579–87. This study shows that the NTS can sense a postprandial concentration of leucine to lower food intake, and establishes the NTS as an important integrator of diverse fuel-related signals to regulate energy balance.

  83. Su Y, Lam TK, He W, et al. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes. 2012;61(1):85–93. This study highlights a novel mechanism of leucine sensing that lowers glucose production, involving the metabolism of leucine rather than activation of the mTOR pathway.

  84. Sclafani A, Zukerman S, Ackroff K. Fructose and glucose conditioned preferences in FVB mice: strain differences in post-oral sugar appetition. Am J Physiol Regul Integr Comp Physiol. 2014:ajpregu 00312 2014.

  85. Sclafani A, Fanizza LJ, Azzara AV. Conditioned flavor avoidance, preference, and indifference produced by intragastric infusions of galactose, glucose, and fructose in rats. Physiol Behav. 1999;67(2):227–34.

    CAS  PubMed  Google Scholar 

  86. Zukerman S, Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning by glucose and fat in the mouse. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1635–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Myers KP. Robust preference for a flavor paired with intragastric glucose acquired in a single trial. Appetite. 2007;48(1):123–7.

    PubMed  Google Scholar 

  88. Tellez LA, Medina S, Han W, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341(6147):800–2. This study links intestinal nutrient sensing mechanism with central food reward pathways.

  89. Sclafani A, Ackroff K, Schwartz GJ. Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol Behav. 2003;78(2):285–94.

    CAS  PubMed  Google Scholar 

  90. Tsurugizawa T, Uematsu A, Uneyama H, et al. Blood oxygenation level-dependent response to intragastric load of corn oil emulsion in conscious rats. Neuroreport. 2009;20(18):1625–9.

    PubMed  Google Scholar 

  91. Otsubo H, Kondoh T, Shibata M, et al. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl. Neuroscience. 2011;196:97–103.

    CAS  PubMed  Google Scholar 

  92. Tsurugizawa T, Uematsu A, Nakamura E, et al. Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut-brain axis. Gastroenterology. 2009;137(1):262–73.

    PubMed  Google Scholar 

  93. Yiin YM, Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric nutrient infusions in food restricted and free-feeding rats. Physiol Behav. 2005;84(2):217–31.

    CAS  PubMed  Google Scholar 

  94. Sclafani A, Glass DS, Margolskee RF, et al. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1643–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Sclafani A, Ackroff K, Abumrad NA. CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R1823–32.

    CAS  PubMed  Google Scholar 

  96. Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol. 2013;305(7):R840–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Ackroff K, Sclafani A. Post-oral fat stimulation of intake and conditioned flavor preference in C57BL/6 J mice: a concentration-response study. Physiol Behav. 2014;129:64–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Ackroff K, Rozental D, Sclafani A. Ethanol-conditioned flavor preferences compared with sugar- and fat-conditioned preferences in rats. Physiol Behav. 2004;81(4):699–713.

    CAS  PubMed  Google Scholar 

  99. Kanoski SE, Alhadeff AL, Fortin SM, et al. Leptin signaling in the medial nucleus tractus solitarius reduces food seeking and willingness to work for food. Neuropsychopharmacology. 2014;39(3):605–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Perez C, Sclafani A. Cholecystokinin conditions flavor preferences in rats. Am J Physiol. 1991;260(1 Pt 2):R179–85.

    CAS  PubMed  Google Scholar 

  101. Ackroff K, Touzani K, Peets TK, et al. Flavor preferences conditioned by intragastric fructose and glucose: differences in reinforcement potency. Physiol Behav. 2001;72(5):691–703.

    CAS  PubMed  Google Scholar 

  102. Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric infusion of ethanol in rats. Pharmacol Biochem Behav. 2001;68(2):327–38.

    CAS  PubMed  Google Scholar 

  103. Ackroff K, Dym C, Yiin YM, et al. Rapid acquisition of conditioned flavor preferences in rats. Physiol Behav. 2009;97(3–4):406–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Lucas F, Ackroff K, Sclafani A. High-fat diet preference and overeating mediated by postingestive factors in rats. Am J Physiol. 1998;275(5 Pt 2):R1511–22.

    CAS  PubMed  Google Scholar 

  105. Sclafani A, Zukerman S, Ackroff K. GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1490–7. This study demonstrates that mechanisms involved in postoral nutrient conditioning and prefence differ from those involved in nutrient-induced satiety.

  106. Ren X, Ferreira JG, Zhou L, et al. Nutrient selection in the absence of taste receptor signaling. J Neurosci. 2010;30(23):8012–23.

    CAS  PubMed  Google Scholar 

  107. Oliveira-Maia AJ, Roberts CD, Walker QD, et al. Intravascular food reward. PLoS One. 2011;6(9):e24992.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Cansell C, Castel J, Denis RG, et al. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry. 2014;19(10):1095–105.

    CAS  PubMed  Google Scholar 

  109. Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem. 2013;24(10):1663–77.

    CAS  PubMed  Google Scholar 

  110. Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007;449(7159):228–32.

    CAS  PubMed  Google Scholar 

  111. Murray S, Tulloch A, Gold MS, et al. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol. 2014;10(9):540–52.

    CAS  PubMed  Google Scholar 

  112. Pothos EN, Creese I, Hoebel BG. Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J Neurosci. 1995;15(10):6640–50.

    CAS  PubMed  Google Scholar 

  113. Geiger BM, Haburcak M, Avena NM, et al. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Falken Y, Hellstrom PM, Holst JJ, et al. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab. 2011;96(7):2227–35.

    CAS  PubMed  Google Scholar 

  115. Scholtz S, Miras AD, Chhina N, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902. This study demonstrates the impact of gastric bypass surgery on central food reward.

Download references

Acknowledgments

The authors would like to thank Dr. Tony Lam for the opportunity and generous guidance during the writing process. SCH is supported by a Canadian graduate scholarship from Natural Sciences and Engineering Research Council of Canada and a Banting and Best Diabetes Center graduate studentship. FAD is a Banting fellow.

Compliance with Ethics Guidelines

Conflict of Interest

Sophie C. Hamr, Beini Wang, Timothy D. Swartz, and Frank A. Duca declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Duca.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamr, S.C., Wang, B., Swartz, T.D. et al. Does Nutrient Sensing Determine How We “See” Food?. Curr Diab Rep 15, 38 (2015). https://doi.org/10.1007/s11892-015-0604-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0604-7

Keywords