Skip to main content
Log in

Roles of P2 receptors in glial cells: focus on astrocytes

  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Central nervous system glial cells release and respond to nucleotides under both physiological and pathological conditions, suggesting that these molecules play key roles in both normal brain function and in repair after damage. In particular, ATP released from astrocytes activates P2 receptors on astrocytes and other brain cells, allowing a form of homotypic and heterotypic signalling, which also involves microglia, neurons and oligodendrocytes. Multiple P2X and P2Y receptors are expressed by both astrocytes and microglia; however, these receptors are differentially recruited by nucleotides, depending upon specific pathophysiological conditions, and also mediate the long-term trophic changes of these cells during inflammatory gliosis. In astrocytes, P2-receptor-induced gliosis occurs via activation of the extracellular-regulated kinases (ERK) and protein kinase B/Akt pathways and involves induction of inflammatory and anti-inflammatory genes, cyclins, adhesion and antiapoptotic molecules. While astrocytic P2Y1 and P2Y2,4 are primarily involved in short-term calcium-dependent signalling, multiple P2 receptor subtypes seem to cooperate to astrocytic long-term changes. Conversely, in microglia, exposure to inflammatory and immunological stimuli results in differential functional changes of distinct P2 receptors, suggesting highly specific roles in acquisition of the activated phenotype. We believe that nucleotide-induced activation of astrocytes and microglia may originally start as a defence mechanism to protect neurons from cytotoxic and ischaemic insults; dysregulation of this process in chronic inflammatory diseases eventually results in neuronal cell damage and loss. On this basis, full elucidation of the specific roles of P2 receptors in these cells may help exploit the beneficial neuroprotective features of activated glia while attenuating their harmful properties and thus provide the basis for novel neuroprotective strategies that specifically target the purinergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 2
Figure 1

Similar content being viewed by others

Abbreviations

α,βmeATP:

alpha-beta-methylene-ATP

AA:

arachidonic acid

bFGF:

basic fibroblast growth factor

βγmeATP:

beta-gamma-methylene-ATP

COX-2:

cyclooxygenase-2

ERK1/2:

extracellular-regulated kinases 1/2

GFAP:

glial fibrillary acidic protein

LPS:

lipopolysaccharide

2meSATP:

2-methylthio-ATP

OPs:

oligodendrocyte progenitors

PLA2 :

phospholipase A2

PLC:

phospholipase C

PLD:

phospholipase D

PPADS:

pyridoxalphosphate-6-azophenyl-2′4′disulphonic acid

TNP-ATP:

2′3′O-(2,4,6-trinitrophenyl)-ATP

References

  1. Illes P, Ribeiro JA (2004) Neuronal P2 receptors of the central nervous system. Curr Top Med Chem 4:831′38

    Article  PubMed  CAS  Google Scholar 

  2. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445′75

    Article  PubMed  CAS  Google Scholar 

  3. Khakh BS, Burnstock G, Kennedy C et al (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107′18

    PubMed  CAS  Google Scholar 

  4. Abbracchio MP, Boeynaems JM, Barnard EA et al (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52′5

    Article  PubMed  CAS  Google Scholar 

  5. Weisman GA, Wang M, Kong Q et al (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31:169′83

    Article  PubMed  CAS  Google Scholar 

  6. Koles L, Furst S, Illes P (2005) P2X and P2Y receptors as possible targets of therapeutic manipulations in CNS illnesses. Drug News Perspect 18:85′01

    Article  PubMed  CAS  Google Scholar 

  7. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556′62

    Article  PubMed  CAS  Google Scholar 

  8. Stevens B, Porta S, Haak LL et al (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855′68

    Article  PubMed  CAS  Google Scholar 

  9. Agresti C, Meomartini ME, Amadio S et al (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50:132′44

    Article  PubMed  CAS  Google Scholar 

  10. Ishibashi T, Dakin KA, Stevens B et al (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823′32

    Article  PubMed  CAS  Google Scholar 

  11. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312′18

    Article  PubMed  CAS  Google Scholar 

  12. Ferrari D, Chiozzi P, Falzoni S et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295′301

    Article  PubMed  CAS  Google Scholar 

  13. Norenberg W, Cordes A, Blohbaum G et al (1997) Coexistence of purino- and pyrimidinoceptors on activated rat microglial cells. Br J Pharmacol 121:1087′098

    Article  PubMed  CAS  Google Scholar 

  14. Walz W, Ilschner S, Ohlemeyer C et al (1993) Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci 13:4403′411

    PubMed  CAS  Google Scholar 

  15. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247′60

    Article  PubMed  CAS  Google Scholar 

  16. Färber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48:133′43

    Article  PubMed  CAS  Google Scholar 

  17. Bianco F, Pravettoni E, Colombo A et al (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268′277

    PubMed  CAS  Google Scholar 

  18. Boucsein C, Zacharias R, Färber K et al (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267′276

    Article  PubMed  Google Scholar 

  19. Bianco F, Fumagalli M, Pravettoni E et al (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Rev 48:144′56

    Article  PubMed  CAS  Google Scholar 

  20. Tsuda M, Shigemoto-Mogami Y, Koizumi S et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:729′30

    Article  CAS  Google Scholar 

  21. Hatten ME, Liem RK, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233′43

    Article  PubMed  CAS  Google Scholar 

  22. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817′830

    PubMed  CAS  Google Scholar 

  23. Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11:387′94

    Article  PubMed  CAS  Google Scholar 

  24. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795′13

    Article  PubMed  CAS  Google Scholar 

  25. Akwa Y, Hassett DE, Eloranta ML et al (1998) Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J Immunol 161:5016′026

    PubMed  CAS  Google Scholar 

  26. Saas P, Boucraut J, Quiquerez AL et al (1999) CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation? J Immunol 162:2326′333

    PubMed  CAS  Google Scholar 

  27. Brambilla R, Abbracchio MP (2001) Modulation of cyclooxygenase-2 and brain reactive astrogliosis by purinergic P2 receptors. Ann N Y Acad Sci 939:54′2

    Article  PubMed  CAS  Google Scholar 

  28. Centemeri C, Bolego C, Abbracchio MP et al (1997) Characterization of the Ca2+ responses evoked by ATP and other nucleotides in mammalian brain astrocytes. Br J Pharmacol 121:1700′706

    Article  PubMed  CAS  Google Scholar 

  29. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185′93

    Article  PubMed  CAS  Google Scholar 

  30. Hassinger TD, Guthrie PB, Atkinson PB et al (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93:13268′3273

    Article  PubMed  CAS  Google Scholar 

  31. Guthrie PB, Knappenberger J, Segal M et al (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520′28

    PubMed  CAS  Google Scholar 

  32. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844′47

    Article  PubMed  CAS  Google Scholar 

  33. Coco S, Calegari F, Pravettoni E et al (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354′362

    Article  PubMed  CAS  Google Scholar 

  34. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752′58

    Article  PubMed  CAS  Google Scholar 

  35. Fumagalli M, Brambilla R, D’Ambrosi N et al (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:203′18

    Article  Google Scholar 

  36. Fumagalli M, Trincavelli L, Lecca D et al (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol 68:113′24

    Article  PubMed  CAS  Google Scholar 

  37. Banfi C, Ferrario S, De Vincenti O et al (2005) P2 receptors in human heart: upregulation of P2X(6) in patients undergoing heart transplantation, interaction with TNFalpha and potential role in myocardial cell death. J Mol Cell Cardiol 39:929′39

    Article  PubMed  CAS  Google Scholar 

  38. Gallagher CJ, Salter MW (2003) Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci 23:6728′739

    PubMed  CAS  Google Scholar 

  39. Ballerini P, Rathbone MP, Di Iorio P et al (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. Neuroreport 7:2533′537

    Article  PubMed  CAS  Google Scholar 

  40. Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625′33

    Article  PubMed  CAS  Google Scholar 

  41. Marchetti B, Abbracchio MP (2005) To be or not to be (inflamed)-is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 26:517′25

    Article  PubMed  CAS  Google Scholar 

  42. Faulkner JR, Herrmann JE, Woo MJ et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143′155

    Article  PubMed  CAS  Google Scholar 

  43. Liberto CM, Albrecht PJ, Herx LM et al (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092′100

    Article  PubMed  CAS  Google Scholar 

  44. Neary JT, Rathbone MP, Cattabeni F et al (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13′8

    Article  PubMed  CAS  Google Scholar 

  45. Abbracchio MP, Saffrey MJ, Hopker V, Burnstock G (1994) Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 59:67′6

    Article  PubMed  CAS  Google Scholar 

  46. Abbracchio MP, Ceruti S, Langfelder R et al (1995) Effects of ATP analogues and basic fibroblast growth factor on astroglial cell differentiation in primary cultures of rat striatum. Int J Dev Neurosci 13:685′93

    Article  PubMed  CAS  Google Scholar 

  47. Bolego C, Ceruti S, Brambilla R et al (1997) Characterization of the signalling pathways involved in ATP and basic fibroblast growth factor-induced astrogliosis. Br J Pharmacol 121:1692′699

    Article  PubMed  CAS  Google Scholar 

  48. Brambilla R, Neary JT, Cattabeni F et al (2002) Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. J Neurochem 83:1285′296

    Article  PubMed  CAS  Google Scholar 

  49. Franke H, Krugel U, Schmidt R et al (2001) P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 134:1180′189

    Article  PubMed  CAS  Google Scholar 

  50. Brambilla R, Burnstock G, Bonazzi A et al (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br J Pharmacol 126:563′67

    Article  PubMed  CAS  Google Scholar 

  51. Brambilla R, Neary JT, Fumagalli M et al (2003) P2Y receptors in brain astroglial cells: identification of a gliotic P2Y receptor coupled to activation of a calcium-independent Ras/ERK1/2 pathway. Drug Dev Res 59:161′70

    Article  CAS  Google Scholar 

  52. Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348′356

    PubMed  CAS  Google Scholar 

  53. Jacques-Silva MC, Rodnight R, Lenz G et al (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106′117

    Article  PubMed  CAS  Google Scholar 

  54. Neary JT, Kang Y (2005) Signaling from P2 nucleotide receptors to protein kinase cascades induced by CNS injury: implications for reactive gliosis and neurodegeneration. Mol Neurobiol 31:95′03

    Article  PubMed  CAS  Google Scholar 

  55. Hu B, Bramlett HM, Sick TJ et al (2001) Activation of ERK/CREB and ATF-2 signalling pathways following traumatic brain injury. J Neurotrauma 18:1161

    Google Scholar 

  56. John GR, Simpson JE, Woodroofe MN et al (2001) Extracellular nucleotides differentially regulate interleukin-1beta signaling in primary human astrocytes: Implications for inflammatory gene expression. J Neurosci 21:4134′142

    PubMed  CAS  Google Scholar 

  57. Chorna NE, Santiago-Perez LI, Erb L et al (2004) P2Y receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91:119′32

    Article  PubMed  CAS  Google Scholar 

  58. Kim SG, Soltysiak KA, Gao ZG et al (2003) Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 65:923′31

    Article  PubMed  CAS  Google Scholar 

  59. Ciccarelli R, Di Iorio P, Giuliani P et al (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25:93′8

    Article  PubMed  CAS  Google Scholar 

  60. Pettifer KM, Kleywegt S, Bau CJ et al (2004) Guanosine protects SH-SY5Y cells against beta-amyloid-induced apoptosis. Neuroreport 15:833′36

    Article  PubMed  CAS  Google Scholar 

  61. Di Iorio P, Ballerini P, Traversa U et al (2004) The antiapoptotic effect of guanosine is mediated by the activation of the PI 3-kinase/AKT/PKB pathway in cultured rat astrocytes. Glia 46:356′68

    Article  PubMed  Google Scholar 

  62. Braun N, Lenz C, Gillardon F et al (1997) Focal cerebral ischemia enhances glial expression of ecto-5-nucleotidase. Brain Res 766:213′26

    Article  PubMed  CAS  Google Scholar 

  63. Volonte C, Amadio S, Cavaliere F et al (2003) Extracellular ATP and neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:403′12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Part of the work described here has been supported by the Italian Ministry of Education (Project of National Research Interest PRIN-COFIN 2002 and 2004 and FIRB RBAUO19-ZEN to MPA). Authors are grateful to Prof. Joseph T. Neary, University of Miami, USA, for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. Abbracchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbracchio, M.P., Ceruti, S. Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signalling 2, 595–604 (2006). https://doi.org/10.1007/s11302-006-9016-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-006-9016-0

Key words