Skip to main content

Advertisement

Glomerular basement membrane composition and the filtration barrier

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The glomerular basement membrane (GBM) is an especially thick basement membrane that contributes importantly to the kidney’s filtration barrier. The GBM derives from the fusion of separate podocyte and endothelial cell basement membranes during glomerulogenesis and consists primarily of laminin-521 (α5β2γ1), collagen α3α4α5(IV), nidogens-1 and -2, and agrin. Of these nine proteins, mutations in the genes encoding four of them (LAMB2, COL4A3, COL4A4, and COL4A5) cause glomerular disease in humans as well as in mice. Furthermore, mutation of a fifth (Lama5) gene in podocytes in mice causes proteinuria, nephrotic syndrome, and progression to renal failure. These results highlight the importance of the GBM for establishing and maintaining a properly functioning glomerular filtration barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farquhar MG (1975) Editorial: The primary glomerular filtration barrier–basement membrane or epithelial slits? Kidney Int 8:197–211

    Article  CAS  Google Scholar 

  2. St. John PL, Abrahamson DR (2001) Glomerular endothelial cells and podocytes jointly synthesize laminin-1 and -11 chains. Kidney Int 60:1037–1046

    Article  CAS  Google Scholar 

  3. Abrahamson DR (1985) Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidneys. J Cell Biol 100:1988–2000

    Article  CAS  Google Scholar 

  4. Abrahamson DR, Hudson BG, Stroganova L, Borza DB, St John PL (2009) Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol 20:1471–1479

    Article  CAS  Google Scholar 

  5. Schnabel E, Anderson JM, Farquhar MG (1990) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111:1255–1263

    Article  CAS  Google Scholar 

  6. Dressler GR (2006) The Cellular Basis of Kidney Development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  Google Scholar 

  7. Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol Ren Physiol 281:F579–F596

    Article  CAS  Google Scholar 

  8. Haraldsson B, Nystrom J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88:451–487

    Article  CAS  Google Scholar 

  9. Haraldsson B, Jeansson M (2009) Glomerular filtration barrier. Curr Opin Nephrol Hypertens 18:331–335

    Article  Google Scholar 

  10. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332

    Article  CAS  Google Scholar 

  11. Colognato H, Winkelmann DA, Yurchenco PD (1999) Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 145:619–631

    Article  CAS  Google Scholar 

  12. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR (1997) The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J Cell Biol 137:685–701

    Article  CAS  Google Scholar 

  13. Miner JH, Sanes JR (1994) Collagen IV α3, α4, and α5 chains in rodent basal laminae: Sequence, distribution, association with laminins, and developmental switches. J Cell Biol 127:879–891

    Article  CAS  Google Scholar 

  14. Hudson BG (2004) The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J Am Soc Nephrol 15:2514–2527

    Article  Google Scholar 

  15. Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 281:38117–38121

    Article  CAS  Google Scholar 

  16. Harvey SJ, Zheng K, Sado Y, Naito I, Ninomiya Y, Jacobs RM, Hudson BG, Thorner PS (1998) Role of distinct type IV collagen networks in glomerular development and function. Kidney Int 54:1857–1866

    Article  CAS  Google Scholar 

  17. Kalluri R, Shield CF III, Todd P, Hudson BG, Neilson EG (1997) Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 99:2470–2478

    Article  CAS  Google Scholar 

  18. Salmivirta K, Talts JF, Olsson M, Sasaki T, Timpl R, Ekblom P (2002) Binding of mouse nidogen-2 to basement membrane components and cells and its expression in embryonic and adult tissues suggest complementary functions of the two nidogens. Exp Cell Res 279:188–201

    Article  CAS  Google Scholar 

  19. Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, Murshed M, Nischt R (2005) Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol 25:6846–6856

    Article  CAS  Google Scholar 

  20. Groffen AJ, Ruegg MA, Dijkman H, van de Velden TJ, Buskens CA, van den Born J, Assmann KJ, Monnens LA, Veerkamp JH, van den Heuvel LP (1998) Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem 46:19–27

    Article  CAS  Google Scholar 

  21. Kummer TT, Misgeld T, Sanes JR (2006) Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr Opin Neurobiol 16:74–82

    Article  CAS  Google Scholar 

  22. Harvey SJ, Jarad G, Cunningham J, Rops AL, van der Vlag J, Berden JH, Moeller MJ, Holzman LB, Burgess RW, Miner JH (2007) Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol 171:139–152

    Article  CAS  Google Scholar 

  23. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    Article  CAS  Google Scholar 

  24. Machuca E, Benoit G, Antignac C (2009) Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet 18:R185–R194

    Article  CAS  Google Scholar 

  25. Farquhar MG (2006) The glomerular basement membrane: not gone, just forgotten. J Clin Invest 116:2090–2093

    Article  CAS  Google Scholar 

  26. Goldberg S, Adair-Kirk TL, Senior RM, Miner JH (2010) Maintenance of glomerular filtration barrier integrity requires laminin alpha5. J Am Soc Nephrol 21:579–586

    Article  CAS  Google Scholar 

  27. Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, Gregory MC, Skolnick MH, Atkin CL, Tryggvason K (1990) Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248:1224–1227

    Article  CAS  Google Scholar 

  28. Kashtan CE (2000) Alport syndromes: phenotypic heterogeneity of progressive hereditary nephritis. Pediatr Nephrol 14:502–512

    Article  CAS  Google Scholar 

  29. Kashtan CE, Kim Y (1992) Distribution of the α1 and α2 chains of collagen IV and of collagens V and VI in Alport syndrome. Kidney Int 42:115–126

    Article  CAS  Google Scholar 

  30. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354:1489–1496

    Article  CAS  Google Scholar 

  31. Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D, Antignac C, Ronco P (2007) COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med 357:2687–2695

    Article  CAS  Google Scholar 

  32. Zenker M, Tralau T, Lennert T, Pitz S, Mark K, Madlon H, Dotsch J, Reis A, Muntefering H, Neumann LM (2004) Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: an autosomal recessive syndrome. Am J Med Genet A 130:138–145

    Article  Google Scholar 

  33. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wuhl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dotsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A (2004) Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13:2625–2632

    Article  CAS  Google Scholar 

  34. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nat Genet 10:400–406

    Article  CAS  Google Scholar 

  35. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2. Nature 374:258–262

    Article  CAS  Google Scholar 

  36. Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD (1999) Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 19:9399–9411

    Article  CAS  Google Scholar 

  37. Hasselbacher K, Wiggins RC, Matejas V, Hinkes BG, Mucha B, Hoskins BE, Ozaltin F, Nurnberg G, Becker C, Hangan D, Pohl M, Kuwertz-Broking E, Griebel M, Schumacher V, Royer-Pokora B, Bakkaloglu A, Nurnberg P, Zenker M, Hildebrandt F (2006) Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int 70:1008–1012

    Article  CAS  Google Scholar 

  38. Matejas V, Hinkes B, Alkandari F, Al-Gazali L, Annexstad E, Aytac MB, Barrow M, Blahova K, Bockenhauer D, Cheong HI, Maruniak-Chudek I, Cochat P, Dotsch J, Gajjar P, Hennekam RC, Janssen F, Kagan M, Kariminejad A, Kemper MJ, Koenig J, Kogan J, Kroes HY, Kuwertz-Broking E, Lewanda AF, Medeira A, Muscheites J, Niaudet P, Pierson M, Saggar A, Seaver L, Suri M, Tsygin A, Wuhl E, Zurowska A, Uebe S, Hildebrandt F, Antignac C, Zenker M (2010) Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat 31:992–1002

    Article  CAS  Google Scholar 

  39. Jarad G, Cunningham J, Shaw AS, Miner JH (2006) Proteinuria precedes podocyte abnormalities in Lamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest 116:2272–2279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

My relevant research is supported by NIH grants R01DK078314, R01GM060432, and R01DK081156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Miner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miner, J.H. Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol 26, 1413–1417 (2011). https://doi.org/10.1007/s00467-011-1785-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1785-1

Keywords