Skip to main content

Advertisement

Log in

Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors’ fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alsousou J, Thompson M, Harrison P, Willett K, Franklin S (2015) Effect of platelet-rich plasma on healing tissues in acute ruptured Achilles tendon: a human immunohistochemistry study. Lancet 385(Suppl 1):S19

    Article  PubMed  Google Scholar 

  • Amable PR, Carias RB, Teixeira MV, da Cruz Pacheco I, Corrêa do Amaral RJ, Granjeiro JM, Borojevic R (2013) Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. https://doi.org/10.1186/scrt218

  • Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R (2014) Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PLoS ONE 9:e104662. https://doi.org/10.1371/journal.pone.0104662

  • Anderson JE (2016) Hepatocyte growth factor and satellite cell activation. Adv Exp Med Biol 900:1–25

    Article  CAS  PubMed  Google Scholar 

  • Andia I, Abate M (2015) Platelet-rich plasma in the treatment of skeletal muscle injuries. Expert Opin Biol Ther 15:987–999

    Article  CAS  PubMed  Google Scholar 

  • Anitua E, Pelacho B, Prado R, Aguirre JJ, Sánchez M, Padilla S, Aranguren XL, Abizanda G, Collantes M, Hernandez M, Perez-Ruiz A, Peñuelas I, Orive G, Prosper F (2015) Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. J Control Release 202:31–39

    Article  CAS  PubMed  Google Scholar 

  • Balthasar S, Bergelin N, Löf C, Vainio M, Andersson S, Törnquist K (2008) Interactions between sphingosine-1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid carcinoma cells. Endocr Relat Cancer 15:521–534

    Article  CAS  PubMed  Google Scholar 

  • Bashir J, Sherman A, Lee H, Kaplan L, Hare JM (2014) Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases. PM R 6:61–69

    Article  PubMed  Google Scholar 

  • Bei Y, Wang F, Yang C, Xiao J (2015) Telocytes in regenerative medicine. J Cell Mol Med 19:1441–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14:1062–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojin FM, Gavriliuc O, Cristea M, Tanasie G, Tatu CS, Panaitescu C, Paunescu V (2011) Telocytes within human skeletal muscle stem cell niche. J Cell Mol Med 15:2269–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassano M, Dellavalle A, Tedesco FS, Quattrocelli M, Crippa S, Ronzoni F, Salvade A, Berardi E, Torrente Y, Cossu G, Sampaolesi M (2011) Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development 138:4523–4533

    Article  CAS  PubMed  Google Scholar 

  • Cavallo C, Roffi A, Grigolo B, Mariani E, Pratelli L, Merli G, Kon E, Marcacci M, Filardo G (2016) Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int 2016:6591717

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adhes Migr 3:337–341

    Article  Google Scholar 

  • Chen J, Crawford R, Chen C, Xiao Y (2013) The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng B Rev 19:516–528

    Article  CAS  Google Scholar 

  • Chen PY, Qin L, Li G, Tellides G, Simons M (2016) Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Sci Rep. https://doi.org/10.1038/srep33407

  • Chumanevich A, Wedman P, Oskeritzian CA (2016) Sphingosine-1-phosphate/Sphingosine-1-phosphate receptor 2 Axis can promote mouse and human primary mast cell Angiogenic potential through Upregulation of vascular endothelial growth factor-a and matrix Metalloproteinase-2. Mediat Inflamm. https://doi.org/10.1155/2016/1503206

  • Costamagna D, Berardi E, Ceccarelli G, Sampaolesi M (2015) Adult Stem Cells and Skeletal Muscle Regeneration. Curr Gene Ther 15:348–363

    Article  CAS  PubMed  Google Scholar 

  • De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8:73–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 17:1788–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimauro I, Grasso L, Fittipaldi S, Fantini C, Mercatelli N, Racca S, Geuna S, Di Gianfrancesco A, Caporossi D, Pigozzi F, Borrione P (2014) Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS ONE. https://doi.org/10.1371/journal.pone.0102993

  • Duan C, Ren H, Gao S (2010) Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 167:344–351

    Article  CAS  PubMed  Google Scholar 

  • Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farup J, Madaro L, Puri PL, Mikkelsen UR (2015) Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis. https://doi.org/10.1038/cddis.2015.198

  • Ferrari G, Pintucci G, Seghezzi G, Hyman K, Galloway AC, Mignatti P (2006) VEGF, a prosurvival factor, acts in concert with TGF-beta1 to induce endothelial cell apoptosis. Proc Natl Acad Sci U S A 103:17260–17265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fieber CB, Eldridge J, Taha TA, Obeid LM, Muise-Helmericks RC (2006) Modulation of total Akt kinase by increased expression of a single isoform: requirement of the sphingosine-1-phosphate receptor, Edg3/S1P3, for the VEGF-dependent expression of Akt3 in primary endothelial cells. Exp Cell Res 312:1164–1173

    Article  CAS  PubMed  Google Scholar 

  • Formigli L, Benvenuti S, Mercatelli R, Quercioli F, Tani A, Mirabella C, Dama A, Saccardi R, Mazzanti B, Cellai I, Zecchi-Orlandini S (2012) Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. J Tissue Eng Regen Med 6:125–134

    Article  CAS  PubMed  Google Scholar 

  • Formigli L, Paternostro F, Tani A, Mirabella C, Quattrini Li A, Nosi D, D’Asta F, Saccardi R, Mazzanti B, Lo Russo G, Zecchi-Orlandini S (2015) MSCs seeded on bioengineered scaffolds improve skin wound healing in rats. Wound Repair Regen 23:115–123

    Article  PubMed  Google Scholar 

  • Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V (2017) Concise review: the use of adipose-derived Stromal vascular fraction cells and platelet rich plasma in regenerative plastic surgery. Stem Cells 35:117–134

    Article  PubMed  Google Scholar 

  • Giannelli M, Chellini F, Sassoli C, Francini F, Pini A, Squecco R, Nosi D, Bani D, Zecchi-Orlandini S, Formigli L (2013) Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol 228:172–181

    Article  CAS  PubMed  Google Scholar 

  • Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M (2006) The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 17:212–219

    Article  PubMed  Google Scholar 

  • Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA (2008) Activation of notch-mediated protective signaling in the myocardium. Circ Res 102:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara-Alvarez A, Schmitt A, Russell RP, Imhoff AB, Buchmann S (2014) Growth factor delivery vehicles for tendon injuries: Mesenchymal stem cells and platelet rich plasma. Muscles Ligaments Tendons J 4:378–385

    PubMed  PubMed Central  Google Scholar 

  • Guillodo Y, Madouas G, Simon T, Le Dauphin H, Saraux A (2016) Platelet-rich plasma (PRP) treatment of sports-related severe acute hamstring injuries. Muscles Ligaments Tendons J 5:284–288

    PubMed  PubMed Central  Google Scholar 

  • Guo D, Ye J, Dai J, Li L, Chen F, Ma D, Ji C (2009) Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res 33:678–685

    Article  CAS  PubMed  Google Scholar 

  • Hamid MS, Yusof A, Mohamed Ali MR (2014) Platelet-rich plasma (PRP) for acute muscle injury: a systematic review. PLoS ONE. https://doi.org/10.1371/journal.pone.0090538

  • Han JH, Zhou W, Li W, Tuan PQ, Khoi NM, Thuong PT, Na M, Myung CS (2015) Pentacyclic Triterpenoids from Astilbe Rivularis that enhance glucose uptake via the activation of Akt and Erk1/2 in C2C12 Myotubes. J Nat Prod 78:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Héron-Milhavet L, Mamaeva D, Rochat A, Lamb NJ, Fernandez A (2008) Akt2 is implicated in skeletal muscle differentiation and specifically binds Prohibitin2/REA. J Cell Physiol 214:158–165

    Article  PubMed  Google Scholar 

  • Hoeferlin LA, Huynh QK, Mietla JA, Sell SA, Tucker J, Chalfant CE, Wijesinghe DS (2015) The lipid portion of activated platelet-rich plasma significantly contributes to its wound healing properties. Adv Wound Care 4:100–109

    Article  Google Scholar 

  • Hosny N, Goubran F, BadrEldin Hasan B, Kamel N (2015) Assessment of vascular endothelial growth factor in fresh versus frozen platelet rich plasma. J Blood Transfus. https://doi.org/10.1155/2015/706903

  • Hwang SY, Kang YJ, Sung B, Kim M, Kim DH, Lee Y, Yoo MA, Kim CM, Chung HY, Kim ND (2015) Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway. Int J Mol Med 36:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Igarashi J, Erwin PA, Dantas AP, Chen H, Michel T (2003) VEGF induces S1P1 receptors in endothelial cells: implications for cross-talk between sphingolipid and growth factor receptors. Proc Natl Acad Sci U S A 100:10664–10669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalowiec JM, D’Este M, Bara JJ, Denom J, Menzel U, Alini M, Verrier S, Herrmann M (2016) An in vitro investigation of platelet-rich plasma-gel as a cell and growth factor delivery vehicle for tissue engineering. Tissue Eng C 22:49–58

    Article  CAS  Google Scholar 

  • Jo CH, Shin JS, Shin WH, Lee SY, Yoon KS, Shin S (2015) Platelet-rich plasma for arthroscopic repair of medium to large rotator cuff tears: a randomized controlled trial. Am J Sports Med 43:2102–2110

    Article  PubMed  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judson RN, Zhang RH, Rossi FM (2013) Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs? FEBS J 280:4100–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasten P, Vogel J, Luginbühl R, Niemeyer P, Weiss S, Schneider S, Kramer M, Leo A, Richter W (2006) Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Cells Tissues Organs 183:68–79

    Article  CAS  PubMed  Google Scholar 

  • Kelc R, Trapecar M, Gradisnik L, Rupnik MS, Vogrin M (2015) Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. PLoS ONE. https://doi.org/10.1371/journal.pone.0117302

  • Kobayashi Y, Saita Y, Nishio H, Ikeda H, Takazawa Y, Nagao M, Takaku T, Komatsu N, Kaneko K (2016) Leukocyte concentration and composition in platelet-rich plasma (PRP) influences the growth factor and protease concentrations. J Orthop Sci 21:683–689

    Article  PubMed  Google Scholar 

  • Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A (2016) Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 99:62–68

    Article  CAS  PubMed  Google Scholar 

  • Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R (2016) The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy 18:13–24

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Wang H, Lin T, Wang S (2014) Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. Mediat Inflamm. https://doi.org/10.1155/2014/565369

  • Krishnan S, Szabo E, Burghardt I, Frei K, Tabatabai G, Weller M (2015) Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget 6:22480–22495

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Usas A, Poddar M, Chen CW, Thompson S, Ahani B, Cummins J, Lavasani M, Huard J (2013) Platelet-rich plasma promotes the proliferation of human muscle derived progenitor cells and maintains their stemness. PLoS ONE. https://doi.org/10.1371/journal.pone.0064923

  • Li H, Hicks JJ, Wang L, Oyster N, Philippon MJ, Hurwitz S, Hogan MV, Huard J (2016a) Customized platelet-rich plasma with transforming growth factor β1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials 87:147–156

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang J, Xiong N, Li S, Chen Y, Yang H, Wu C, Zeng H, Liu Y (2016b) Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol. https://doi.org/10.1007/s12032-016-0747-7

  • Liu Y, Schneider MF (2014) FGF2 activates TRPC and ca (2+) signaling leading to satellite cell activation. Front Physiol. https://doi.org/10.3389/fphys.2014.00038

  • Liu LY, Hou YS, Chai JK, Hu Q, Duan HJ, Yu YH, Yin HN, Hao DF, Feng G, Li T, Du JD (2013) Basic fibroblast growth factor/vascular endothelial growth factor in the serum from severe burn patients stimulates the proliferation of cultured human umbilical cord mesenchymal stem cells via activation of notch signaling pathways. J Trauma Acute Care Surg 75:789–797

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Gao F, Wen L, Ouyang M, Wang Y, Wang Q, Luo L, Jian Z (2017) Osteocalcin induces proliferation via positive activation of the PI3K/Akt, P38 MAPK pathways and promotes differentiation through activation of the GPRC6A-ERK1/2 pathway in C2C12 Myoblast cells. Cell Physiol Biochem 43:1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Lluri G, Jaworski DM (2005) Regulation of TIMP-2, MT1-MMP, and MMP-2 expression during C2C12 differentiation. Muscle Nerve 32:492–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Xiu X, Zhao Y, Gui M (2015) Improved proliferation and differentiation of bone marrow Mesenchymal stem cells into vascular endothelial cells with Sphingosine 1-phosphate. Transplant Proc 47:2035–2040

    Article  CAS  PubMed  Google Scholar 

  • Lubkowska A, Dolegowska B, Banfi G (2012) Growth factor content in PRP and their applicability in medicine. J Biol Regul Homeost Agents 26:3S–22S

    CAS  PubMed  Google Scholar 

  • Manon-Jensen T, Multhaupt HA, Couchman JR (2013) Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. FEBS J 280:2320–2331

    Article  CAS  PubMed  Google Scholar 

  • Martinello T, Bronzini I, Perazzi A, Testoni S, De Benedictis GM, Negro A, Caporale G, Mascarello F, Iacopetti I, Patruno M (2013) Effects of in vivo applications of peripheral blood-derived mesenchymal stromal cells (PB-MSCs) and platlet-rich plasma (PRP) on experimentally injured deep digital flexor tendons of sheep. J Orthop Res 31:306–314

    Article  CAS  PubMed  Google Scholar 

  • Marycz K, Śmieszek A, Jeleń M, Chrząstek K, Grzesiak J, Meissner J (2015) The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells - new opportunities in regenerative medicine. Cell Mol Biol Lett 20:510–533

    Article  CAS  PubMed  Google Scholar 

  • McClure MJ, Garg K, Simpson DG, Ryan JJ, Sell SA, Bowlin GL, Ericksen JJ (2016) The influence of platelet-rich plasma on myogenic differentiation. J Tissue Eng Regen Med 10:E239–E249

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki D, Nakamura A, Fukushima K, Yoshida K, Takeda S, Ikeda S (2011) Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 20:1787–1799

    Article  CAS  PubMed  Google Scholar 

  • Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC (2014) Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010071.pub3

  • Mosca MJ, Rodeo SA (2015) Platelet-rich plasma for muscle injuries: game over or time out? Curr Rev Musculoskelet Med 8:145–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagura Y, Tsuno NH, Kano K, Inoue A, Aoki J, Hirowatari Y, Kaneko M, Kurano M, Matsuhashi M, Ohkawa R, Tozuka M, Yatomi Y, Okazaki H (2016) Regulation of the lysophosphatidylserine and sphingosine 1-phosphate levels in autologous whole blood by the pre-storage leukocyte reduction. Transfus Med 26:365–372

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Navani A, Li G, Chrystal J (2017) Platelet rich plasma in musculoskeletal pathology: a necessary rescue or a lost cause? Pain Physician 20:E345–E356

    PubMed  Google Scholar 

  • Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Nakamura K, Kishioka Y, Kato-Mori Y, Wakamatsu J, Hattori A (2008) Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells. J Muscle Res Cell Motil 29:37–44

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Takahashi R, Adachi E, Kondo S, Kuratomi S, Noma A, Alexander DB, Motoda H, Okada A, Seiki M, Itoh T, Itohara S, Takahashi C, Noda M (2004) Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23:5041–5048

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Nagata Y, Wada E, Zammit PS, Shiozuka M, Matsuda R (2015) Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 333:228–237

    Article  CAS  PubMed  Google Scholar 

  • Ohtake Y, Tojo H, Seiki M (2006) Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 119:3822–3832

    Article  CAS  PubMed  Google Scholar 

  • Patruno M, Martinello T (2014) Treatments of the injured tendon in veterinary medicine: from scaffolds to adult stem cells. Histol Histopathol 29:417–422

    CAS  PubMed  Google Scholar 

  • Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO (2011) Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med 15:1379–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, Maas M, Tol JL (2014) Platelet-rich plasma injections in acute muscle injury. N Engl J Med 370:2546–2547

    Article  CAS  PubMed  Google Scholar 

  • Rønning SB, Carlson CR, Stang E, Kolset SO, Hollung K, Pedersen ME (2015) Syndecan-4 regulates muscle differentiation and is internalized from the plasma membrane during Myogenesis. PLoS ONE. https://doi.org/10.1371/journal.pone.0129288

  • Rubio-Azpeitia E, Andia I (2014) Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience. Muscles Ligaments Tendons J 4:52–62

    PubMed  PubMed Central  Google Scholar 

  • Ryu JM, Baek YB, Shin MS, Park JH, Park SH, Lee JH, Han HJ (2014) Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. Stem Cell Res 12:69–85

    Article  CAS  PubMed  Google Scholar 

  • San Sebastian KM, Lobato I, Hernández I, Burgos-Alonso N, Gomez-Fernandez MC, López JL, Rodríguez B, March AG, Grandes G, Andia I (2014) Efficacy and safety of autologous platelet rich plasma for the treatment of vascular ulcers in primary care: phase III study. BMC Fam Pract. https://doi.org/10.1186/s12875-014-0211-8

  • Sartori R, Gregorevic P, Sandri M (2014) TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25:464–471

    Article  CAS  PubMed  Google Scholar 

  • Sassoli C, Formigli L, Bini F, Tani A, Squecco R, Battistini C, Zecchi-Orlandini S, Francini F, Meacci E (2011a) Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction. J Cell Mol Med 15:2498–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassoli C, Pini A, Mazzanti B, Quercioli F, Nistri S, Saccardi R, Zecchi-Orlandini S, Bani D, Formigli L (2011b) Mesenchymal stromal cells affect cardiomyocyte growth through juxtacrine Notch-1/Jagged-1 signaling and paracrine mechanisms: clues for cardiac regeneration. J Mol Cell Cardiol 51:399–408

    Article  CAS  PubMed  Google Scholar 

  • Sassoli C, Pini A, Chellini F, Mazzanti B, Nistri S, Nosi D, Saccardi R, Quercioli F, Zecchi-Orlandini S, Formigli L (2012a) Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF. PLoS ONE. https://doi.org/10.1371/journal.pone.0037512

  • Sassoli C, Zecchi-Orlandini S, Formigli L (2012b) Trophic actions of bone marrow-derived mesenchymal stromal cells for muscle repair/regeneration. Cell 1:832–850

    Article  CAS  Google Scholar 

  • Sassoli C, Frati A, Tani A, Anderloni G, Pierucci F, Matteini F, Chellini F, Zecchi Orlandini S, Formigli L, Meacci E (2014a) Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS ONE. https://doi.org/10.1371/journal.pone.0108662

  • Sassoli C, Nosi D, Tani A, Chellini F, Mazzanti B, Quercioli F, Zecchi-Orlandini S, Formigli L (2014b) Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells. Exp Cell Res 323:297–313

    Article  CAS  PubMed  Google Scholar 

  • Sassoli C, Chellini F, Squecco R, Tani A, Idrizaj E, Nosi D, Giannelli M, Zecchi-Orlandini S (2016) Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: new perspectives for tissue fibrosis treatment. Lasers Surg Med 48:318–332

    Article  PubMed  Google Scholar 

  • Sassoli C, Pierucci F, Tani A, Frati A, Chellini F, Matteini F, Vestri A, Anderloni G, Nosi D, Zecchi Orlandini S, Meacci E (2018) Sphingosine 1-phopsphate receptor 1 is required for Mmp-2 function in bone marrow-mesenchymal stromal cells: implications for cytoskeleton assembly and proliferation. Stem Cells Int. (in press)

  • Serrano AL, Muñoz-Cánoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316:3050–3058

    Article  CAS  PubMed  Google Scholar 

  • Sun HY, Wei SP, Xu RC, Xu PX, Zhang WC (2010) Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: novel insights into angiogenesis. Biochem Biophys Res Commun 395:361–366

    Article  CAS  PubMed  Google Scholar 

  • Suthar M, Gupta S, Bukhari S, Ponemone V (2017) Treatment of chronic non-healing ulcers using autologous platelet rich plasma: a case series. J Biomed Sci. https://doi.org/10.1186/s12929-017-0324-1

  • Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4:217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimoto T, Jin ZG, Berk BC (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 277:42997–43001

    Article  CAS  PubMed  Google Scholar 

  • Terada S, Ota S, Kobayashi M, Kobayashi T, Mifune Y, Takayama K, Witt M, Vadalà G, Oyster N, Otsuka T, Fu FH, Huard J (2013) Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am 95:980–988

    Article  PubMed  Google Scholar 

  • Thomas K, Engler AJ, Meyer GA (2015) Extracellular matrix regulation in the muscle satellite cell niche. Connect Tissue Res 56:1–8

    Article  PubMed  Google Scholar 

  • Tierney MT, Sacco A (2016) Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol 26:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonkin J, Temmerman L, Sampson RD, Gallego-Colon E, Barberi L, Bilbao D, Schneider MD, Musarò A, Rosenthal N (2015) Monocyte/macrophage-derived IGF-1 orchestrates Murine skeletal muscle regeneration and modulates Autocrine polarization. Mol Ther 23:1189–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonti GA, Mannello F (2008) From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int J Dev Biol 52:1023–1032

    Article  PubMed  Google Scholar 

  • Tsai WC, Yu TY, Lin LP, Lin MS, Tsai TT, Pang J (2017) Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation. J Orthop Res. https://doi.org/10.1002/jor.23547

  • van den Dolder J, Mooren R, Vloon AP, Stoelinga PJ, Jansen JA (2006) Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells. Tissue Eng 12:3067–3073

    Article  PubMed  Google Scholar 

  • Velleman SG, Song Y (2017) Development and growth of the avian Pectoralis major (breast) muscle: function of Syndecan-4 and Glypican-1 in adult Myoblast proliferation and differentiation. Front Physiol. https://doi.org/10.3389/fphys.2017.00577

  • von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, Ljungman P, Gustafsson B, Karlsson H, Le Blanc K, Ringdén O (2012) Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant 18:557–564

    Article  Google Scholar 

  • Walker N, Kahamba T, Woudberg N, Goetsch K, Niesler C (2015) Dose-dependent modulation of myogenesis by HGF: implications for c-Met expression and downstream signalling pathways. Growth Factors 33:229–241

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wu Z (2000) The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 275:36750–36757

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Chang N, Liu X, Han Z, Zhu T, Li C, Yang L, Li L (2012) Bone marrow-derived mesenchymal stem cells differentiate to hepatic myofibroblasts by transforming growth factor-β1 via sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis. Am J Pathol 181:85–97

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Middleton KK, Fu FH, Im HJ, Wang JH (2013) HGF mediates the anti-inflammatory effects of PRP on injured tendons. PLoS ONE. https://doi.org/10.1371/journal.pone.0067303

  • Zhao N, Guo Y, Zhang M, Lin L, Zheng Z (2010) Akt-mTOR signaling is involved in Notch-1-mediated glioma cell survival and proliferation. Oncol Rep 23:1443–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dott. Benedetta Mazzanti (Department of Experimental and Clinical Medicine - Section of Hematology, University of Florence, Italy) for having kindly provided BM-MSCs and to Dott. Carlo Mirabella (Immunohaematology and Transfusion Medicine Unit of the University Hospital of Careggi, Florence, Italy) for PRP preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Sassoli.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human partecipants and/or animals-ethical approval

All procedures performed in studies involving animals were in accordance with the European Community guidelines for animal care (DL 116/92, application of the European Communities Council Directive of 24 November 1986; 86/609/EEC) and approved by the Committee for Animal Care and Experimental Use of the University of Florence - No. A5278–01. The protocols were communicated to local authorities and to the Italian Ministry of the Health; according to Italian law (Art.7/D.lgs 116/92) such a procedure does not require Ministry authorization. PRP was obtained at the Immunohaematology and Transfusion Medicine Unit of the University Hospital of Careggi (Florence) from the whole blood of adult healthy volunteers after receiving an informed consent and was provided in ready-to-use aliquots classified as not suitable for transfusion-infusion purposes. Its use in experimental in vitro protocols does not require Ethical Committee’s approval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassoli, C., Vallone, L., Tani, A. et al. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res 372, 549–570 (2018). https://doi.org/10.1007/s00441-018-2792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2792-3

Keywords

Navigation