Skip to main content
Log in

Potential role of the rice OsCCS52A gene in endoreduplication

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In eukaryotes, the cell cycle consists of four distinct phases: G1, S, G2 and M. In certain condition, the cells skip M-phase and undergo endoreduplication. Endoreduplication, occurring during a modified cell cycle, duplicates the entire genome without being followed by M-phase. A cycle of endoreduplication is common in most of the differentiated cells of plant vegetative tissues and it occurs extensively in cereal endosperm cells. Endoreduplication occurs when CDK/Cyclin complex low or inactive caused by ubiquitin-mediated degradation by APC and their activators. In this study, rice cell cycle switch 52 A (OsCCS52A), an APC activator, is functionally characterized using the reverse genetic approach. In rice, OsCCS52A is highly expressed in seedlings, flowers, immature panicles and 15 DAP kernels. Localization studies revealed that OsCCS52A is a nuclear protein. OsCCS52A interacts with OsCdc16 in yeast. In addition, overexpression of OsCCS52A inhibits mitotic cell division and induces endoreduplication and cell elongation in fission yeast. The homozygous mutant exhibits dwarfism and smaller seeds. Further analysis demonstrated that endoreduplication cycles in the endosperm of mutant seeds were disturbed, evidenced by reduced nuclear and cell sizes. Taken together, these results suggest that OsCCS52A is involved in maintaining normal seed size formation by mediating the exit from mitotic cell division to enter the endoreduplication cycles in rice endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APC:

Anaphase-promoting complex

CDK:

Cyclin-dependent kinase

DAP:

Days after pollination

DAPI:

4′,6-Diamidino-2-phenylindole

EGFP:

Enhanced-gene fluorescent protein

OsCCS52A :

Rice cell cycle switch 52 A

OsCdc16:

Rice cell division cycle protein 16

M-phase:

Mitotic phase

MS:

Murashige and Skoog

References

  • An G, Jeong D-H, Jung K-H, Lee S (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 59(1):111–123

    Article  PubMed  CAS  Google Scholar 

  • An S, Park S, Jeong D-H, Lee D-Y, Kang H-G, Yu J-H, Hur J, Kim S-R, Kim Y-H, Lee M, Han S, Kim S-J, Yang J, Kim E, Wi SJ, Chung HS, Hong J-P, Choe V, Lee H-K, Choi J-H, Nam J, Kim S-R, Park P-B, Park KY, Kim WT, Choe S, Lee C-B, An G (2003) Generation and analysis of end-sequence database for T-DNA tagging lines in rice. Plant Physiol 133(4):2040–2047

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–219

    Article  CAS  Google Scholar 

  • Bird DA, Buruiana MM, Zhou Y, Fowke LC, Wang H (2007) Arabidopsis cyclin-dependent kinase inhibitors are nuclear-localized and show different localization patterns within the nucleoplasm. Plant Cell Rep 26(7):861–872

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Frugier F, Folmer S, Serralbo O, Willemsen V, Wolkenfelt H, Eloy NB, Ferreira PC, Weisbeek P, Scheres B (2002) The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev 16(19):2566–2575

    Article  PubMed  CAS  Google Scholar 

  • Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, Hilson P, Inzé D, Van Damme D, Russinova E (2010) Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complex. Plant Physiol 152(2):553–565

    Article  PubMed  CAS  Google Scholar 

  • Brown SC, Bergounioux C, Tallet S, Marie D (1991) Flow cytometry of nuclei for ploidy and cell cycle analysis. In: Negrutiu I, Gharti-Chhetri G (eds) A laboratory guide for cellular and molecular plant biology. Birkhäuser, Basel, pp 326–345

    Google Scholar 

  • Capron A, Okrész L, Genschik P (2003) First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci 8(2):83–89

    Article  PubMed  CAS  Google Scholar 

  • Cebolla A, Vinardell JM, Kiss E, Oláh B, Roudier F, Kondorosi A, Kondorosi E (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J 18(16):4476–4484

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR application. Plant Mol Biol Rep 17(1):53–57

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at high frequency. Proc Natl Acad Sci USA 97(7):3718–3723

    Article  PubMed  CAS  Google Scholar 

  • Dilkes BP, Dante RA, Coelho C, Larkins BA (2002) Genetic analyses of endoreduplication in Zea mays endosperm: evidence of sporophytic and zygotic maternal control. Genetics 160(3):1163–1177

    PubMed  Google Scholar 

  • Endo T, Shimada I, Roise D, Inagaki E (1989) N-terminal half of a mitochondrial presequence takes a helical conformation when bound to dodecylphosphocholine micelles: a proton nuclear magnetic resonance study. J Biochem 106(3):396–400

    PubMed  CAS  Google Scholar 

  • Fülöp K, Tarayre S, Kelemen Z, Horváth G, Kevei Z, Nikovics K, Bakó L, Brown S, Kondorosi A, Kondorosi E (2005) Arabidopsis anaphase-promoting complexes: multiple activators and wide range of substrates might keep APC perpetually busy. Cell Cycle 4(8):1084–1092

    Article  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96(3):985–989

    Article  PubMed  CAS  Google Scholar 

  • Gendreau E, Höfte H, Grandjean O, Brown S, Traas J (1998) Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl. Plant J 13(2):221–230

    Article  PubMed  CAS  Google Scholar 

  • González-Sama A, Coba de la Peña T, Kevel Z, Mergaert P, Lucas M, de Felipe MR, Kondorosi E, Pueyo JJ (2006) Nuclear DNA endoreduplication and expression of the mitotic inhibitor Ccs52 associated to determinate and lupinoid nodule organogenesis. Mol Plant Microbe Interact 19(2):173–180

    Article  PubMed  Google Scholar 

  • Hammen PK, Gorenstein DG, Weiner H (1994) Structure of the signal sequence for two mitochondrial matrix proteins that are not proteolytically processed upon import. Biochemistry 33(28):8610–8617

    Article  PubMed  CAS  Google Scholar 

  • Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47(11):1457–1472

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucl Acids Res 35(suppl 2):W585–W587

    Article  PubMed  Google Scholar 

  • Hülskamp M, Schnittger A, Folkers U (1999) Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system. Int Rev Cytol 186:147–178

    Article  PubMed  Google Scholar 

  • Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45(1):123–132

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH (2005) High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J 41(1):162–174

    Article  PubMed  CAS  Google Scholar 

  • Kowles RV, Phillips RL (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. Proc Natl Acad Sci USA 82(20):7010–7014

    Article  PubMed  CAS  Google Scholar 

  • Kwee HS, Sundaresan V (2003) The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the Anaphase Promoting Complex in Arabidopsis. Plant J 36(6):853–866

    Article  PubMed  CAS  Google Scholar 

  • Lamb JR, Michaud WA, Sikorski RS, Hieter PA (1994) Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. EMBO J 13(18):4321–4328

    PubMed  CAS  Google Scholar 

  • Larson-Rabin Z, Li Z, Masson PH, Day CD (2009) FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis. Plant Physiol 149(2):874–884

    Article  PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5(10):1383–1399

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R–2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150(1):244–256

    Article  PubMed  CAS  Google Scholar 

  • Mathieu-Rivet E, Gévaudant F, Sicard A, Salar S, Do PT, Mouras A, Fernie AR, Gibon Y, Rothan C, Chevalier C, Hernould M (2010) Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato. Plant J 62(5):727–741

    Article  PubMed  CAS  Google Scholar 

  • Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123:127–130

    Article  PubMed  CAS  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissues of Arabidopsis. Plant Cell 5(11):1661–1668

    Article  PubMed  Google Scholar 

  • Okazaki K, Okazaki N, Kume K, Jinno S, Tanaka K, Okayama H (1990) High frequency transformation method and library transducing vectors for cloning mammalian cDNAs by transcomplementation of Schizosaccharomyces pombe. Nucl Acids Res 18(22):6485–6489

    Article  PubMed  CAS  Google Scholar 

  • Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    Article  PubMed  CAS  Google Scholar 

  • Sabelli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol 149(1):14–26

    Article  PubMed  CAS  Google Scholar 

  • Tarayre S, Vinardell JM, Cebolla A, Kondorosi A, Kondorosi E (2004) Two classes of the Cdh1-type activators of the anaphase-promoting complex in plants: novel functional domains and distinct regulation. Plant Cell 16(2):422–434

    Article  PubMed  CAS  Google Scholar 

  • Traas J, Hülskamp M, Gendreau E, Hofte H (1998) Endoreduplication and development: rule without dividing? Curr Opin Plant Biol 1(6):498–503

    Article  PubMed  CAS  Google Scholar 

  • Vanstraelen M, Baloban M, Da Ines O, Cultrone A, Lammens T, Boudolf V, Brown SC, De Veylder L, Mergaert P, Kondorosi E (2009) APC/C-CCS52A complexes control meristem maintenance in the Arabidopsis root. Proc Natl Acad Sci USA 106(28):11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Murakami H, Okayama H (1997) A WD repeat protein controls the cell cycle and differentiation by negatively regulating Cdc2/B-type cyclin complexes. Mol Biol Cell 8(12):2475–2486

    PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44(3):283–301

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Ching YP, Ng RW, Jin DY (2003) Differential expression, localization and activity of two alternatively spliced isoforms of human APC regulator CDH1. Biochem J 374(2):349–358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009-0068189). MS, JYC, MHJ and NE were supported by scholarships from the BK21 program, MEST, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Min Woo or Daeyoung Son.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tab. S1 List of oligonucleotides used in this study.

Supplementary Fig. S1 Multiple sequence alignment and phylogenetic tree of closely-related CCS52 genes.

Amino acid sequences of OsCCS52A and the closest CCS52 members of rice (OsCCS52A and OsCCS52B), Medicago (MtCCS52A and MtCCS52B), Arabidopsis (AtCCS52A1, AtCCS52A2 and AtCCS52B), maize (ZmCCS52A and ZmCCS52B), human (HsCdh1) and fission yeast (SpSrw1) were aligned using ClustalX program. Numbers at the right indicate the amino acid residue position. The conserved APC-interacting motifs (C-box, CSM, and the C-terminal IR residues) are boxed in the N-terminus and the C-terminus, respectively; and the seven WD40-repeats are indicated by a double-headed arrow. Gaps (-) were introduced for maximum alignment.

Supplementary Fig. S2 Phylogenetic tree of OsCCS52A (red underlined) and its closest members was constructed using Clustal X and MEGA 4 software.

Supplementary Fig. S3 Microscopy of the cross sections of mature leaves. Paraffin-embedded mature leaves of wild-type (left) and osccs52a-1 (right) were sectioned and stained with DAPI. Numbers indicate close-up images at the same portions of wild-type and osccs52a-1.

Supplementary material 1 (PPT 1377 kb)

Supplementary material 2 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su’udi, M., Cha, JY., Jung, M.H. et al. Potential role of the rice OsCCS52A gene in endoreduplication. Planta 235, 387–397 (2012). https://doi.org/10.1007/s00425-011-1515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1515-8

Keywords

Navigation