Skip to main content

Advertisement

Spatial organization of genes as a component of regulated expression

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The DNA of living cells is highly compacted. Inherent in this spatial constraint is the need for cells to organize individual genetic loci so as to facilitate orderly retrieval of information. Complex genetic regulatory mechanisms are crucial to all organisms, and it is becoming increasingly evident that spatial organization of genes is one very important mode of regulation for many groups of genes. In eukaryotic nuclei, it appears not only that DNA is organized in three-dimensional space but also that this organization is dynamic and interactive with the transcriptional state of the genes. Spatial organization occurs throughout evolution and with genes transcribed by all classes of RNA polymerases in all eukaryotic nuclei, from yeast to human. There is an increasing body of work examining the ways in which this organization and consequent regulation are accomplished. In this review, we discuss the diverse strategies that cells use to preferentially localize various classes of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acker J, Ozanne C, Kachouri-Lafond R et al (2008) Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-independent way for expression of 5S rRNA genes. Nucleic Acids Res 36:5832–5844

    Article  PubMed  CAS  Google Scholar 

  • Ahmed S, Brickner JH (2007) Regulation and epigenetic control of transcription at the nuclear periphery. Trends Genet 23:396–402

    Article  PubMed  CAS  Google Scholar 

  • Akam M (1989) Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57:347–349

    Article  PubMed  CAS  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  PubMed  CAS  Google Scholar 

  • Altuvia Y, Landgraf P, Lithwick G et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706

    Article  PubMed  CAS  Google Scholar 

  • Bartlett J, Blagojevic J, Carter D et al (2006) Specialized transcription factories. Biochem Soc Symp 73:67–75

    PubMed  CAS  Google Scholar 

  • Bartova E, Kozubek S (2006) Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 98:323–336

    Article  PubMed  CAS  Google Scholar 

  • Bartova E, Kozubek S, Kozubek M et al (2000) The influence of the cell cycle, differentiation and irradiation on the nuclear location of the abl, bcr and c-myc genes in human leukemic cells. Leuk Res 24:233–241

    Article  PubMed  CAS  Google Scholar 

  • Baugh LR, Demodena J, Sternberg PW (2009) RNA Pol II accumulates at promoters of growth genes during developmental arrest. Science 324:92–94

    Article  PubMed  CAS  Google Scholar 

  • Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18:343–358

    Article  PubMed  CAS  Google Scholar 

  • Bell GI, DeGennaro LJ, Gelfand DH et al (1977) Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and location of the regions coding for 5S, 5.8S, 18S, and 25S ribosomal RNAs. J Biol Chem 252:8118–8125

    PubMed  CAS  Google Scholar 

  • Berger AB, Cabal GG, Fabre E et al (2008) High-resolution statistical mapping reveals gene territories in live yeast. Nat Methods 5:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR (1998) Nucleolar localization of early tRNA processing. Genes Dev 12:2463–2468

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal T, Gleason KS (2003) Caenorhabditis elegans operons: form and function. Nat Rev Genet 4:112–120

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal T, Evans D, Link CD et al (2002) A global analysis of Caenorhabditis elegans operons. Nature 417:851–854

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  • Bolton EC, Boeke JD (2003) Transcriptional interactions between yeast tRNA genes, flanking genes and Ty elements: a genomic point of view. Genome Res 13:254–263

    Article  PubMed  CAS  Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138

    Article  PubMed  CAS  Google Scholar 

  • Briand JF, Navarro F, Gadal O, Thuriaux P (2001) Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 21:189–195

    Article  PubMed  CAS  Google Scholar 

  • Brickner JH (2009) Transcriptional memory at the nuclear periphery. Curr Opin Cell Biol 21:127–133

    Article  PubMed  CAS  Google Scholar 

  • Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2:e342

    Article  PubMed  CAS  Google Scholar 

  • Brickner DG, Cajigas I, Fondufe-Mittendorf Y et al (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5:e81

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Amoils S, Horn JM et al (2001) Expression of alpha- and beta-globin genes occurs within different nuclear domains in haemopoietic cells. Nat Cell Biol 3:602–606

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Leach J, Reittie JE et al (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172:177–187

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Green J, das Neves RP et al (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182:1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM (2004) Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc Natl Acad Sci U S A 101:16495–16500

    Article  PubMed  CAS  Google Scholar 

  • Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM (2005) Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J Cell Biol 168:375–387

    Article  PubMed  CAS  Google Scholar 

  • Cabal GG, Genovesio A, Rodriguez-Navarro S et al (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–773

    Article  PubMed  CAS  Google Scholar 

  • Cao A, Moi P (2002) Regulation of the globin genes. Pediatr Res 51:415–421

    Article  PubMed  CAS  Google Scholar 

  • Carey MF, Singh K, Botchan M, Cozzarelli NR (1986) Induction of specific transcription by RNA polymerase III in transformed cells. Mol Cell Biol 6:3068–3076

    PubMed  CAS  Google Scholar 

  • Carter DR, Eskiw C, Cook PR (2008) Transcription factories. Biochem Soc Trans 36:585–589

    Article  PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Komili S et al (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439

    Article  PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Drubin DA, Rando OJ, Silver PA (2005) Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev 19:1188–1198

    Article  PubMed  CAS  Google Scholar 

  • Cavalli G (2007) Chromosome kissing. Curr Opin Genet Dev 17:443–450

    Article  PubMed  CAS  Google Scholar 

  • Chalker DL, Sandmeyer SB (1990) Transfer RNA genes are genomic targets for de Novo transposition of the yeast retrotransposon Ty3. Genetics 126:837–850

    PubMed  CAS  Google Scholar 

  • Chalker DL, Sandmeyer SB (1992) Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev 6:117–128

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Chanfreau G, Legrain P, Jacquier A (1998) Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J Mol Biol 284:975–988

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  PubMed  CAS  Google Scholar 

  • Clark SG, Lu X, Horvitz HR (1994) The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137:987–997

    PubMed  CAS  Google Scholar 

  • Cobbe N, Heck MM (2000) Review: SMCs in the world of chromosome biology—from prokaryotes to higher eukaryotes. J Struct Biol 129:123–143

    Article  PubMed  CAS  Google Scholar 

  • Cobbe N, Savvidou E, Heck MM (2006) Diverse mitotic and interphase functions of condensins in Drosophila. Genetics 172:991–1008

    Article  PubMed  CAS  Google Scholar 

  • Coughlin DJ, Babak T, Nihranz C, Hughes TR, Engelke DR (2009) Prediction and verification of mouse tRNA gene families. RNA Biol 6 (in press)

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Kurz A, Zirbel R et al (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792

    PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S et al (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio C, Schmidt CK, Katou Y et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227

    Article  PubMed  CAS  Google Scholar 

  • Daniels LM, Delany ME (2003) Molecular and cytogenetic organization of the 5S ribosomal DNA array in chicken (Gallus gallus). Chromosome Res 11:305–317

    Article  PubMed  CAS  Google Scholar 

  • de Laat W (2007) Long-range DNA contacts: romance in the nucleus? Curr Opin Cell Biol 19:317–320

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Dej KJ, Ahn C, Orr-Weaver TL (2004) Mutations in the Drosophila condensin subunit dCAP-G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics 168:895–906

    Article  PubMed  CAS  Google Scholar 

  • Devine SE, Boeke JD (1996) Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev 10:620–633

    Article  PubMed  CAS  Google Scholar 

  • Dittmar KA, Goodenbour JM, Pan T (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2:e221

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Kamakaka RT (2001) RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. Embo J 20:520–531

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708

    Article  PubMed  CAS  Google Scholar 

  • Drouin G (2000) Expressed retrotransposed 5S rRNA genes in the mouse and rat genomes. Genome 43:213–215

    Article  PubMed  CAS  Google Scholar 

  • Duboule D, Dolle P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. Embo J 8:1497–1505

    PubMed  CAS  Google Scholar 

  • Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11:822–829

    Article  PubMed  CAS  Google Scholar 

  • Faro-Trindade I, Cook PR (2006) Transcription factories: structures conserved during differentiation and evolution. Biochem Soc Trans 34:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Ferrigno O, Virolle T, Djabari Z et al (2001) Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat Genet 28:77–81

    Article  PubMed  CAS  Google Scholar 

  • Finlan LE, Sproul D, Thomson I et al (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039

    Article  PubMed  CAS  Google Scholar 

  • Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824

    Article  PubMed  CAS  Google Scholar 

  • Ganot P, Kallesoe T, Reinhardt R, Chourrout D, Thompson EM (2004) Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol Cell Biol 24:7795–7805

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881–892

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM (2001) Positions of potential: nuclear organization and gene expression. Cell 104:639–642

    Article  PubMed  CAS  Google Scholar 

  • Gerbi SA, Borovjagin AV, Lange TS (2003) The nucleolus: a site of ribonucleoprotein maturation. Curr Opin Cell Biol 15:318–325

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cytol 242:283–336

    Article  PubMed  CAS  Google Scholar 

  • Goetze S, Mateos-Langerak J, Gierman HJ et al (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27:4475–4487

    Article  PubMed  CAS  Google Scholar 

  • Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367–378

    Article  PubMed  CAS  Google Scholar 

  • Haeusler RA, Engelke DR (2006) Spatial organization of transcription by RNA polymerase III. Nucleic Acids Res 34:4826–4836

    Article  PubMed  CAS  Google Scholar 

  • Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 22:2204–2214

    Article  PubMed  CAS  Google Scholar 

  • Harper ME, Price J, Korn LJ (1983) Chromosomal mapping of Xenopus 5S genes: somatic-type versus oocyte-type. Nucleic Acids Res 11:2313–2323

    Article  PubMed  CAS  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci U S A 69:3394–3398

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D (2006) The nucleolus: a model for the organization of nuclear functions. Histochem Cell Biol 126:135–148

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2002) The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev 16:399–414

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2005) Condensins: organizing and segregating the genome. Curr Biol 15:R265–275

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322

    Article  PubMed  CAS  Google Scholar 

  • Hlatky L, Sachs RK, Vazquez M, Cornforth MN (2002) Radiation-induced chromosome aberrations: insights gained from biophysical modeling. Bioessays 24:714–723

    Article  PubMed  Google Scholar 

  • Holland PW (2001) Beyond the Hox: how widespread is homeobox gene clustering? J Anat 199:13–23

    Article  PubMed  CAS  Google Scholar 

  • Holley WR, Mian IS, Park SJ, Rydberg B, Chatterjee A (2002) A model for interphase chromosomes and evaluation of radiation-induced aberrations. Radiat Res 158:568–580

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Kwon YS, Nunez E et al (2008) Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci U S A 105:19199–19204

    Article  PubMed  Google Scholar 

  • Huang LS, Tzou P, Sternberg PW (1994) The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol Biol Cell 5:395–411

    PubMed  CAS  Google Scholar 

  • Huang CE, Milutinovich M, Koshland D (2005) Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos Trans R Soc Lond B Biol Sci 360:537–542

    Article  PubMed  CAS  Google Scholar 

  • Hull MW, Erickson J, Johnston M, Engelke DR (1994) tRNA genes as transcriptional repressor elements. Mol Cell Biol 14:1266–1277

    PubMed  CAS  Google Scholar 

  • Iborra FJ, Pombo A, Jackson DA, Cook PR (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci 109(Pt 6):1427–1436

    PubMed  CAS  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. Embo J 12:1059–1065

    PubMed  CAS  Google Scholar 

  • Jacob F, Perrin D, Sanchez C, Monod J (1960) Operon: a group of genes with the expression coordinated by an operator. C R Hebd Seances Acad Sci 250:1727–1729

    PubMed  CAS  Google Scholar 

  • Jang KL, Latchman DS (1989) HSV infection induces increased transcription of Alu repeated sequences by RNA polymerase III. FEBS Lett 258:255–258

    Article  PubMed  CAS  Google Scholar 

  • Jessberger R (2002) The many functions of SMC proteins in chromosome dynamics. Nat Rev Mol Cell Biol 3:767–778

    Article  PubMed  CAS  Google Scholar 

  • Kaplan FS, Murray J, Sylvester JE et al (1993) The topographic organization of repetitive DNA in the human nucleolus. Genomics 15:123–132

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Ruddle FH (1993) Evolution of a regulatory gene family: HOM/HOX genes. Curr Opin Genet Dev 3:931–938

    Article  PubMed  CAS  Google Scholar 

  • Kaufman TC, Lewis R, Wakimoto B (1980) Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homoeotic gene complex in polytene chromosome interval 84a-B. Genetics 94:115–133

    PubMed  Google Scholar 

  • Kim J, Kass DH, Deininger PL (1995) Transcription and processing of the rodent ID repeat family in germline and somatic cells. Nucleic Acids Res 23:2245–2251

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Yu J, Han TS et al (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37:1672–1681

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Weiner BM (1993) Potential advantages of unstable interactions for pairing of chromosomes in meiotic, somatic, and premeiotic cells. Cold Spring Harb Symp Quant Biol 58:553–565

    PubMed  CAS  Google Scholar 

  • Kmita M, Duboule D (2003) Organizing axes in time and space; 25 years of colinear tinkering. Science 301:331–333

    Article  PubMed  CAS  Google Scholar 

  • Kruszka K, Barneche F, Guyot R et al (2003) Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. Embo J 22:621–632

    Article  PubMed  CAS  Google Scholar 

  • Kumaran RI, Spector DL (2008) A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 180:51–65

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Horn PJ, Peterson CL (2007) SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 21:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Kuroda M, Tanabe H, Yoshida K et al (2004) Alteration of chromosome positioning during adipocyte differentiation. J Cell Sci 117:5897–5903

    Article  PubMed  CAS  Google Scholar 

  • Kurshakova MM, Krasnov AN, Kopytova DV et al (2007) SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. Embo J 26:4956–4965

    Article  PubMed  CAS  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lappin TR, Grier DG, Thompson A, Halliday HL (2006) HOX genes: seductive science, mysterious mechanisms. Ulster Med J 75:23–31

    PubMed  Google Scholar 

  • Lavoie BD, Hogan E, Koshland D (2004) In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 18:76–87

    Article  PubMed  CAS  Google Scholar 

  • Leader DJ, Clark GP, Watters J et al (1997) Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRNAs. Embo J 16:5742–5751

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. Embo J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  • Legagneux V, Cubizolles F, Watrin E (2004) Multiple roles of condensins: a complex story. Biol Cell 96:201–213

    Article  PubMed  CAS  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  PubMed  CAS  Google Scholar 

  • Liang D, Zhou H, Zhang P et al (2002) A novel gene organization: intronic snoRNA gene clusters from Oryza sativa. Nucleic Acids Res 30:3262–3272

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Moghimi B, Yang TP, Strouboulis J, Bungert J (2008) Locus control region mediated regulation of adult beta-globin gene expression. J Cell Biochem 105:9–16

    Article  PubMed  CAS  Google Scholar 

  • Loidl J (2003) Chromosomes of the budding yeast Saccharomyces cerevisiae. Int Rev Cytol 222:141–196

    Article  PubMed  Google Scholar 

  • Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283:1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Lunyak VV, Prefontaine GG, Nunez E et al (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317:248–251

    Article  PubMed  CAS  Google Scholar 

  • Lupo R, Breiling A, Bianchi ME, Orlando V (2001) Drosophila chromosome condensation proteins topoisomerase II and barren colocalize with polycomb and maintain Fab-7 PRE silencing. Mol Cell 7:127–136

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002a) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002b) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157:579–589

    Article  PubMed  CAS  Google Scholar 

  • Mann RS (1997) Why are Hox genes clustered? Bioessays 19:661–664

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Appel B, Schaack J et al (1982) The 5S RNA genes of Schizosaccharomyces pombe. Nucleic Acids Res 10:487–500

    Article  PubMed  CAS  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    Article  PubMed  CAS  Google Scholar 

  • Matarazzo MR, Boyle S, D’Esposito M, Bickmore WA (2007) Chromosome territory reorganization in a human disease with altered DNA methylation. Proc Natl Acad Sci U S A 104:16546–16551

    Article  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180:39–50

    Article  PubMed  CAS  Google Scholar 

  • Mendjan S, Taipale M, Kind J et al (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21:811–823

    Article  PubMed  CAS  Google Scholar 

  • Menon BB, Sarma NJ, Pasula S et al (2005) Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc Natl Acad Sci U S A 102:5749–5754

    Article  PubMed  CAS  Google Scholar 

  • Metzenberg RL, Stevens JN, Selker EU, Morzycka-Wroblewska E (1985) Identification and chromosomal distribution of 5S rRNA genes in Neurospora crassa. Proc Natl Acad Sci U S A 82:2067–2071

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa N, Nakamura T, Kokubu A et al (2008) Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J Cell Biol 180:1115–1131

    Article  PubMed  CAS  Google Scholar 

  • Neves H, Ramos C, da Silva MG, Parreira A, Parreira L (1999) The nuclear topography of ABL, BCR, PML, and RARalpha genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93:1197–1207

    PubMed  CAS  Google Scholar 

  • Noordermeer D, de Laat W (2008) Joining the loops: beta-globin gene regulation. IUBMB Life 60:824–833

    Article  PubMed  CAS  Google Scholar 

  • Oakes M, Nogi Y, Clark MW, Nomura M (1993) Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Mol Cell Biol 13:2441–2455

    PubMed  CAS  Google Scholar 

  • Oakes M, Aris JP, Brockenbrough JS et al (1998) Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J Cell Biol 143:23–34

    Article  PubMed  CAS  Google Scholar 

  • Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504

    Article  PubMed  CAS  Google Scholar 

  • Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE et al (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Mitchell JA et al (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5:e192

    Article  PubMed  CAS  Google Scholar 

  • Page AP (1997) Cyclophilin and protein disulfide isomerase genes are co-transcribed in a functionally related manner in Caenorhabditis elegans. DNA Cell Biol 16:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Palstra RJ, de Laat W, Grosveld F (2008) Beta-globin regulation and long-range interactions. Adv Genet 61:107–142

    Article  PubMed  CAS  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432

    Article  PubMed  CAS  Google Scholar 

  • Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44

    Article  PubMed  Google Scholar 

  • Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Cook PR (1996) The localization of sites containing nascent RNA and splicing factors. Exp Cell Res 229:201–203

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Jones E, Iborra FJ et al (2000) Specialized transcription factories within mammalian nuclei. Crit Rev Eukaryot Gene Expr 10:21–29

    PubMed  CAS  Google Scholar 

  • Prieto JL, McStay B (2005) Nucleolar biogenesis: the first small steps. Biochem Soc Trans 33:1441–1443

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot NJ, Shander MH, Manley JL, Gefter ML, Maniatis T (1980) Structure and in vitro transcription of human globin genes. Science 209:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Bachellerie JP, Puvion E (1991) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100:395–409

    Article  PubMed  CAS  Google Scholar 

  • Qu LH, Henras A, Lu YJ et al (1999) Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol Cell Biol 19:1144–1158

    PubMed  CAS  Google Scholar 

  • Ragoczy T, Bender MA, Telling A, Byron R, Groudine M (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse I, Perlman MD, Scalzo D et al (2009) The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc Natl Acad Sci U S A 106:6679–6684

    Article  PubMed  Google Scholar 

  • Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–247

    Article  PubMed  CAS  Google Scholar 

  • Sachs RK, Levy D, Chen AM et al (2000) Random breakage and reunion chromosome aberration formation model; an interaction-distance version based on chromatin geometry. Int J Radiat Biol 76:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Saffer JD, Thurston SJ (1989) A negative regulatory element with properties similar to those of enhancers is contained within an Alu sequence. Mol Cell Biol 9:355–364

    PubMed  CAS  Google Scholar 

  • Saksela K, Baltimore D (1993) Negative regulation of immunoglobulin kappa light-chain gene transcription by a short sequence homologous to the murine B1 repetitive element. Mol Cell Biol 13:3698–3705

    PubMed  CAS  Google Scholar 

  • Sarma NJ, Haley TM, Barbara KE et al (2007) Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics 175:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Weisenberger D (1994) The nucleolus. Curr Opin Cell Biol 6:354–359

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher HG, Wachtler F (1991) The functional significance of nucleolar structures. Ann Genet 34:151–160

    PubMed  CAS  Google Scholar 

  • Sexton T, Umlauf D, Kurukuti S, Fraser P (2007) The role of transcription factories in large-scale structure and dynamics of interphase chromatin. Semin Cell Dev Biol 18:691–697

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Liu DP, Liang CC (2001) The regulatory network controlling beta-globin gene switching. Mol Biol Rep 28:175–183

    Article  PubMed  CAS  Google Scholar 

  • Simms TA, Dugas SL, Gremillion JC et al (2008) TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae. Eukaryot Cell 7:2078–2086

    Article  PubMed  CAS  Google Scholar 

  • Spieth J, Brooke G, Kuersten S, Lea K, Blumenthal T (1993) Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell 73:521–532

    Article  PubMed  CAS  Google Scholar 

  • Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435:637–645

    Article  PubMed  CAS  Google Scholar 

  • Stadler S, Schnapp V, Mayer R et al (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F et al (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–778

    Article  PubMed  CAS  Google Scholar 

  • Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T (2008) Allele-specific nuclear positioning of the monoallelically expressed marker GFAP. Genes Dev 22:489–498

    Article  PubMed  CAS  Google Scholar 

  • Thompson M, Haeusler RA, Good PD, Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302:1399–1401

    Article  PubMed  CAS  Google Scholar 

  • Thorey IS, Cecena G, Reynolds W, Oshima RG (1993) Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice. Mol Cell Biol 13:6742–6751

    PubMed  CAS  Google Scholar 

  • Tolerico LH, Benko AL, Aris JP et al (1999) Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Genetics 151:57–75

    PubMed  CAS  Google Scholar 

  • Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10:1453–1465

    Article  PubMed  CAS  Google Scholar 

  • Tomilin NV, Iguchi-Ariga SM, Ariga H (1990) Transcription and replication silencer element is present within conserved region of human Alu repeats interacting with nuclear protein. FEBS Lett 263:69–72

    Article  PubMed  CAS  Google Scholar 

  • Treinin M, Gillo B, Liebman L, Chalfie M (1998) Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc Natl Acad Sci U S A 95:15492–15495

    Article  PubMed  CAS  Google Scholar 

  • Tsang CK, Li H, Zheng XS (2007a) Nutrient starvation promotes condensin loading to maintain rDNA stability. Embo J 26:448–458

    Article  PubMed  CAS  Google Scholar 

  • Tsang CK, Wei Y, Zheng XF (2007b) Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle 6:2213–2218

    PubMed  CAS  Google Scholar 

  • Tycowski KT, Steitz JA (2001) Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 80:119–125

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F, Hopfner KP (2006) Chromosome biology: the crux of the ring. Curr Biol 16:R102–105

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576

    PubMed  CAS  Google Scholar 

  • Wang BD, Strunnikov A (2008) Transcriptional homogenization of rDNA repeats in the episome-based nucleolus induces genome-wide changes in the chromosomal distribution of condensin. Plasmid 59:45–53

    Article  PubMed  CAS  Google Scholar 

  • Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A (2005a) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25:7216–7225

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Haeusler RA, Good PD et al (2005b) Silencing near tRNA genes requires nucleolar localization. J Biol Chem 280:8637–8639

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I et al (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  • Wegel E, Shaw P (2005) Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 114:331–337

    Article  PubMed  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106:5569–5574

    Google Scholar 

  • Zacharioudakis I, Gligoris T, Tzamarias D (2007) A yeast catabolic enzyme controls transcriptional memory. Curr Biol 17:2041–2046

    Article  PubMed  CAS  Google Scholar 

  • Zhou GL, Xin L, Song W et al (2006) Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 26:5096–5105

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Amaral MD, Englmann A et al (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166:815–825

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tom Misteli, Tom Blumenthal, and Jason Brickner for critical reading of the manuscript and members of the Engelke lab for useful discussion. This work was supported by NIH grant GM082875 to DRE and by the NIH University of Michigan Genetics Predoctoral Training Grant (T32 GM07544) to DAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Engelke.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, D.A., Engelke, D.R. Spatial organization of genes as a component of regulated expression. Chromosoma 119, 13–25 (2010). https://doi.org/10.1007/s00412-009-0236-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0236-2

Keywords