Skip to main content

Advertisement

Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Endogenous levels of glucocorticoids rise during pregnancy to warrant development and maturation of the fetal organs close to birth. However, during most of the gestation, the fetus is protected from excessive biologically active endogenous glucocorticoids by placental and fetal expression of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). Maternal stress, which may overwhelm placental 11β-HSD2 activity with high glucocorticoid levels, or administration of synthetic glucocorticoids to improve the survival chances of the premature newborn, are associated to postnatal increased risk for immune diseases. Fetal exposure to excessive glucocorticoids may underlie this altered postnatal immunity. Here, we revise the role that placental and fetal 11β-HSD2, fetal glucocorticoid exposure, and programming of the offspring’s the hypothalamic-pituitary-adrenal (HPA) axis play on concerted steps in immune fetal development. We could identify gaps in knowledge about glucocorticoid-induced programming of immune diseases. Finally, based on current evidence about glucocorticoid and HPA axis-mediated immune regulation, we hypothesize on mechanisms that could drive the enhanced risk for atopies, infections, and type I diabetes in offspring that were prenatally exposed to glucocorticoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Box 1
Fig. 1

Similar content being viewed by others

References

  1. Arck PC, Hecher K (2013) Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med 19(5):548–556. doi:10.1038/nm.3160

    Article  CAS  PubMed  Google Scholar 

  2. Douglas AJ (2010) Mother-offspring dialogue in early pregnancy: impact of adverse environment on pregnancy maintenance and neurobiology. Prog Neuropsychopharmacol Biol Psychiatry 35(5):1167–1177

    Article  PubMed  Google Scholar 

  3. Jung C, Ho JT, Torpy DJ, Rogers A, Doogue M, Lewis JG, Czajko RJ, Inder WJ (2011) A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J Clin Endocrinol Metab 96(5):1533–1540

    Article  CAS  PubMed  Google Scholar 

  4. Wyrwoll CS, Seckl JR, Holmes MC (2009) Altered placental function of 11beta-hydroxysteroid dehydrogenase 2 knockout mice. Endocrinology 150(3):1287–1293

    Article  CAS  PubMed  Google Scholar 

  5. Holmes MC, Abrahamsen CT, French KL, Paterson JM, Mullins JJ, Seckl JR (2006) The mother or the fetus? 11beta-hydroxysteroid dehydrogenase type 2 null mice provide evidence for direct fetal programming of behavior by endogenous glucocorticoids. J Neurosci 26(14):3840–3844

    Article  CAS  PubMed  Google Scholar 

  6. Cookson H, Granell R, Joinson C, Ben-Shlomo Y, Henderson AJ (2009) Mothers’ anxiety during pregnancy is associated with asthma in their children. J Allergy Clin Immunol 123(4):847–853 e811. doi:10.1016/j.jaci.2009.01.042

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beijers R, Jansen J, Riksen-Walraven M, de Weerth C (2010) Maternal prenatal anxiety and stress predict infant illnesses and health complaints. Pediatrics 126(2):e401–409. doi:10.1542/peds.2009-3226

    Article  PubMed  Google Scholar 

  8. Hartwig IR, Pincus MK, Diemert A, Hecher K, Arck PC (2013) Sex-specific effect of first-trimester maternal progesterone on birthweight. Hum Reprod 28(1):77–86. doi:10.1093/humrep/des367

    Article  CAS  PubMed  Google Scholar 

  9. Duthie L, Reynolds RM (2013) Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: influences on maternal and fetal outcomes. Neuroendocrinology 98(2):106–115

    Article  CAS  PubMed  Google Scholar 

  10. Lindsay JR, Nieman LK (2005) The hypothalamic-pituitary-adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr Rev 26(6):775–799

    Article  CAS  PubMed  Google Scholar 

  11. Reis FM, Fadalti M, Florio P, Petraglia F (1999) Putative role of placental corticotropin-releasing factor in the mechanisms of human parturition. J Soc Gynecol Investig 6(3):109–119

    Article  CAS  PubMed  Google Scholar 

  12. Petraglia F, Potter E, Cameron VA, Sutton S, Behan DP, Woods RJ, Sawchenko PE, Lowry PJ, Vale W (1993) Corticotropin-releasing factor-binding protein is produced by human placenta and intrauterine tissues. J Clin Endocrinol Metab 77(4):919–924

    CAS  PubMed  Google Scholar 

  13. Robinson BG, Emanuel RL, Frim DM, Majzoub JA (1988) Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc Natl Acad Sci U S A 85(14):5244–5248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mastorakos G, Ilias I (2003) Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci 997:136–149

    Article  CAS  PubMed  Google Scholar 

  15. St-Pierre J, Laurent L, King S, Vaillancourt C (2015) Effects of prenatal maternal stress on serotonin and fetal development. Placenta. doi:10.1016/j.placenta.2015.11.013

    PubMed  Google Scholar 

  16. Douglas AJ, Brunton PJ, Bosch OJ, Russell JA, Neumann ID (2003) Neuroendocrine responses to stress in mice: hyporesponsiveness in pregnancy and parturition. Endocrinology 144(12):5268–5276

    Article  CAS  PubMed  Google Scholar 

  17. Mizoguchi Y, Yamaguchi H, Aoki F, Enami J, Sakai S (1997) Corticosterone is required for the prolactin receptor gene expression in the late pregnant mouse mammary gland. Mol Cell Endocrinol 132(1–2):177–183

    Article  CAS  PubMed  Google Scholar 

  18. Johnstone HA, Wigger A, Douglas AJ, Neumann ID, Landgraf R, Seckl JR, Russell JA (2000) Attenuation of hypothalamic-pituitary-adrenal axis stress responses in late pregnancy: changes in feedforward and feedback mechanisms. J Neuroendocrinol 12(8):811–822

    Article  CAS  PubMed  Google Scholar 

  19. Fowden AL, Forhead AJ (2015) Glucocorticoids as regulatory signals during intrauterine development. Exp Physiol 100(12):1477–1487

    Article  CAS  PubMed  Google Scholar 

  20. Fowden AL, Li J, Forhead AJ (1998) Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc 57(1):113–122

    Article  CAS  PubMed  Google Scholar 

  21. Rog-Zielinska EA, Richardson RV, Denvir MA, Chapman KE (2014) Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol 52(2):R125–135

    Article  CAS  PubMed  Google Scholar 

  22. Vandevyver S, Dejager L, Tuckermann J, Libert C (2013) New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 154(3):993–1007

    Article  CAS  PubMed  Google Scholar 

  23. Vandevyver S, Dejager L, Libert C (2012) On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13(3):364–374

    Article  CAS  PubMed  Google Scholar 

  24. Kadmiel M, Cidlowski JA (2013) Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34(9):518–530. doi:10.1016/j.tips.2013.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coe CL, Lubach GR, Karaszewski JW (1999) Prenatal stress and immune recognition of self and nonself in the primate neonate. Biol Neonate 76(5):301–310

    Article  CAS  PubMed  Google Scholar 

  26. Montano MM, Wang MH, Even MD, vom Saal FS (1991) Serum corticosterone in fetal mice: sex differences, circadian changes, and effect of maternal stress. Physiol Behav 50(2):323–329

    Article  CAS  PubMed  Google Scholar 

  27. van Zon AA, Eling WM, Hermsen CC, Koekkoek AA (1982) Corticosterone regulation of the effector function of malarial immunity during pregnancy. Infect Immun 36(2):484–491

    PubMed  PubMed Central  Google Scholar 

  28. Chang HY, Suh DI, Yang SI, Kang MJ, Lee SY, Lee E, Choi IA, Lee KS, Shin YJ, Shin YH, Kim YH, Kim KW, Ahn K, Won HS, Choi SJ, Oh SY, Kwon JY, Park HJ, Lee KJ, Jun JK, Yu HS, Lee SH, Jung BK, Kwon JW, Choi YK, Do N, Bae YJ, Kim H, Chang WS, Kim EJ, Lee JK, Hong SJ (2016) Prenatal maternal distress affects atopic dermatitis in offspring mediated by oxidative stress. J Allergy Clin Immunol. doi:10.1016/j.jaci.2016.01.020

    PubMed Central  Google Scholar 

  29. Mattos GE, Heinzmann JM, Norkowski S, Helbling JC, Minni AM, Moisan MP, Touma C (2013) Corticosteroid-binding globulin contributes to the neuroendocrine phenotype of mice selected for extremes in stress reactivity. J Endocrinol 219(3):217–229

    Article  CAS  PubMed  Google Scholar 

  30. Kallapur SG, Presicce P, Rueda CM, Jobe AH, Chougnet CA (2014) Fetal immune response to chorioamnionitis. Semin Reprod Med 32(1):56–67. doi:10.1055/s-0033-1361823

    Article  PubMed  PubMed Central  Google Scholar 

  31. Glavina-Durdov M, Springer O, Capkun V, Saratlija-Novakovic Z, Rozic D, Barle M (2003) The grade of acute thymus involution in neonates correlates with the duration of acute illness and with the percentage of lymphocytes in peripheral blood smear. Pathological study. Biol Neonate 83(4):229–234

    Article  PubMed  Google Scholar 

  32. Chapman K, Holmes M, Seckl J (2013) 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 93(3):1139–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Addison RS, Maguire DJ, Mortimer RH, Roberts MS, Cannell GR (1993) Pathway and kinetics of prednisolone metabolism in the human placenta. J Steroid Biochem Mol Biol 44(3):315–320

    Article  CAS  PubMed  Google Scholar 

  34. Gur C, Diav-Citrin O, Shechtman S, Arnon J, Ornoy A (2004) Pregnancy outcome after first trimester exposure to corticosteroids: a prospective controlled study. Reprod Toxicol 18(1):93–101

    Article  CAS  PubMed  Google Scholar 

  35. Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3, CD004454

    Google Scholar 

  36. Gyamfi-Bannerman C, Thom EA, Blackwell SC, Tita AT, Reddy UM, Saade GR, Rouse DJ, McKenna DS, Clark EA, Thorp JM Jr, Chien EK, Peaceman AM, Gibbs RS, Swamy GK, Norton ME, Casey BM, Caritis SN, Tolosa JE, Sorokin Y, VanDorsten JP, Jain L, NM-FMU Network (2016) Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. doi:10.1056/NEJMoa1516783

    Google Scholar 

  37. Althabe F, Belizan JM, McClure E, Goldenberg RL, Buekens PM (2015) Antenatal corticosteroids for preterm births in resource-limited settings—authors’ reply. Lancet 385(9981):1945. doi:10.1016/S0140-6736(15)60956-4

    Article  PubMed  Google Scholar 

  38. Tegethoff M, Pryce C, Meinlschmidt G (2009) Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review. Endocr Rev 30(7):753–789

    Article  CAS  PubMed  Google Scholar 

  39. Alexander N, Rosenlocher F, Stalder T, Linke J, Distler W, Morgner J, Kirschbaum C (2012) Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J Clin Endocrinol Metab 97(10):3538–3544. doi:10.1210/jc.2012-1970

    Article  CAS  PubMed  Google Scholar 

  40. Bevilacqua E, Brunelli R, Anceschi MM (2010) Review and meta-analysis: benefits and risks of multiple courses of antenatal corticosteroids. J Matern Fetal Neonatal Med 23(4):244–260. doi:10.1080/14767050903165222

    Article  CAS  PubMed  Google Scholar 

  41. Diederich S, Eigendorff E, Burkhardt P, Quinkler M, Bumke-Vogt C, Rochel M, Seidelmann D, Esperling P, Oelkers W, Bahr V (2002) 11beta-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. J Clin Endocrinol Metab 87(12):5695–5701. doi:10.1210/jc.2002-020970

    Article  CAS  PubMed  Google Scholar 

  42. Kemp MW, Newnham JP, Challis JG, Jobe AH, Stock SJ (2016) The clinical use of corticosteroids in pregnancy. Hum Reprod Update 22(2):240–259

    CAS  PubMed  Google Scholar 

  43. Kajantie E, Raivio T, Janne OA, Hovi P, Dunkel L, Andersson S (2004) Circulating glucocorticoid bioactivity in the preterm newborn after antenatal betamethasone treatment. J Clin Endocrinol Metab 89(8):3999–4003

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez-Balsells MM, Murad MH, Lane M, Lampropulos JF, Albuquerque F, Mullan RJ, Agrwal N, Elamin MB, Gallegos-Orozco JF, Wang AT, Erwin PJ, Bhasin S, Montori VM (2010) Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab 95(6):2560–2575. doi:10.1210/jc.2009-2575

    Article  CAS  PubMed  Google Scholar 

  45. Alfaidy N, Gupta S, DeMarco C, Caniggia I, Challis JR (2002) Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J Clin Endocrinol Metab 87(10):4797–4805

    Article  CAS  PubMed  Google Scholar 

  46. Benediktsson R, Calder AA, Edwards CR, Seckl JR (1997) Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf) 46(2):161–166

    Article  CAS  Google Scholar 

  47. Cottrell EC, Holmes MC, Livingstone DE, Kenyon CJ, Seckl JR (2012) Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. Faseb J 26(5):1866–1874

    Article  CAS  PubMed  Google Scholar 

  48. Heussner K, Ruebner M, Huebner H, Rascher W, Menendez-Castro C, Hartner A, Fahlbusch FB, Rauh M (2015) Species differences of 11beta-hydroxysteroid dehydrogenase type 2 function in human and rat term placenta determined via LC-MS/MS. Placenta 37:79–84

    Article  PubMed  CAS  Google Scholar 

  49. Lopez Bernal A, Craft IL (1981) Corticosteroid metabolism in vitro by human placenta, fetal membranes and decidua in early and late gestation. Placenta 2(4):279–285

    Article  CAS  PubMed  Google Scholar 

  50. Ni XT, Duan T, Yang Z, Guo CM, Li JN, Sun K (2009) Role of human chorionic gonadotropin in maintaining 11beta-hydroxysteroid dehydrogenase type 2 expression in human placental syncytiotrophoblasts. Placenta 30(12):1023–1028. doi:10.1016/j.placenta.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  51. Murphy BE (1981) Ontogeny of cortisol-cortisone interconversion in human tissues: a role for cortisone in human fetal development. J Steroid Biochem 14(9):811–817

    Article  CAS  PubMed  Google Scholar 

  52. Murphy VE, Clifton VL (2003) Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 24(7):739–744

    Article  CAS  PubMed  Google Scholar 

  53. Brown RW, Diaz R, Robson AC, Kotelevtsev YV, Mullins JJ, Kaufman MH, Seckl JR (1996) The ontogeny of 11 beta-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology 137(2):794–797

    CAS  PubMed  Google Scholar 

  54. Clarke KA, Ward JW, Forhead AJ, Giussani DA, Fowden AL (2002) Regulation of 11 beta-hydroxysteroid dehydrogenase type 2 activity in ovine placenta by fetal cortisol. J Endocrinol 172(3):527–534

    Article  CAS  PubMed  Google Scholar 

  55. Stewart PM, Murry BA, Mason JI (1994) Type 2 11 beta-hydroxysteroid dehydrogenase in human fetal tissues. J Clin Endocrinol Metab 78(6):1529–1532

    CAS  PubMed  Google Scholar 

  56. Pasqualini JR, Nguyen BL, Uhrich F, Wiqvist N, Diczfalusy E (1970) Cortisol and cortisone metabolism in the human foeto-placental unit at midgestation. J Steroid Biochem 1(1):209–219

    Article  CAS  Google Scholar 

  57. Wyrwoll C, Keith M, Noble J, Stevenson PL, Bombail V, Crombie S, Evans LC, Bailey MA, Wood E, Seckl JR, Holmes MC (2015) Fetal brain 11beta-hydroxysteroid dehydrogenase type 2 selectively determines programming of adult depressive-like behaviors and cognitive function, but not anxiety behaviors in male mice. Psychoneuroendocrinology 59:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tesic D, Hawes JE, Zosky GR, Wyrwoll CS (2015) Vitamin D deficiency in BALB/c mouse pregnancy increases placental transfer of glucocorticoids. Endocrinology 156(10):3673–3679. doi:10.1210/en.2015-1377

    Article  CAS  PubMed  Google Scholar 

  59. Kerzner LS, Stonestreet BS, Wu KY, Sadowska G, Malee MP (2002) Antenatal dexamethasone: effect on ovine placental 11beta-hydroxysteroid dehydrogenase type 2 expression and fetal growth. Pediatr Res 52(5):706–712. doi:10.1203/00006450-200211000-00016

    CAS  PubMed  Google Scholar 

  60. Baisden B, Sonne S, Joshi RM, Ganapathy V, Shekhawat PS (2007) Antenatal dexamethasone treatment leads to changes in gene expression in a murine late placenta. Placenta 28(10):1082–1090. doi:10.1016/j.placenta.2007.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Challis JR, Sloboda DM, Alfaidy N, Lye SJ, Gibb W, Patel FA, Whittle WL, Newnham JP (2002) Prostaglandins and mechanisms of preterm birth. Reproduction 124(1):1–17

    Article  CAS  PubMed  Google Scholar 

  62. Chisaka H, Johnstone JF, Premyslova M, Manduch Z, Challis JR (2005) Effect of pro-inflammatory cytokines on expression and activity of 11beta-hydroxysteroid dehydrogenase type 2 in cultured human term placental trophoblast and human choriocarcinoma JEG-3 cells. J Soc Gynecol Investig 12(5):303–309. doi:10.1016/j.jsgi.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  63. Hardy DB, Yang K (2002) The expression of 11 beta-hydroxysteroid dehydrogenase type 2 is induced during trophoblast differentiation: effects of hypoxia. J Clin Endocrinol Metab 87(8):3696–3701. doi:10.1210/jcem.87.8.8720

    CAS  PubMed  Google Scholar 

  64. Schoof E, Girstl M, Frobenius W, Kirschbaum M, Dorr HG, Rascher W, Dotsch J (2001) Decreased gene expression of 11beta-hydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase in human placenta of patients with preeclampsia. J Clin Endocrinol Metab 86(3):1313–1317. doi:10.1210/jcem.86.3.7311

    CAS  PubMed  Google Scholar 

  65. Wyrwoll CS, Noble J, Thomson A, Tesic D, Miller MR, Rog-Zielinska EA, Moran CM, Seckl JR, Chapman KE, Holmes MC (2016) Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1520356113

    PubMed  Google Scholar 

  66. Speirs HJ, Seckl JR, Brown RW (2004) Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol 181(1):105–116

    Article  CAS  PubMed  Google Scholar 

  67. Waddell BJ, Benediktsson R, Brown RW, Seckl JR (1998) Tissue-specific messenger ribonucleic acid expression of 11beta-hydroxysteroid dehydrogenase types 1 and 2 and the glucocorticoid receptor within rat placenta suggests exquisite local control of glucocorticoid action. Endocrinology 139(4):1517–1523

    CAS  PubMed  Google Scholar 

  68. Brown RW, Seckl JR (2005) Glucocorticoid action in development. Curr Opin Endocrinol Diabetes 12(3):224–232

    Article  CAS  Google Scholar 

  69. Hundertmark S, Dill A, Ebert A, Zimmermann B, Kotelevtsev YV, Mullins JJ, Seckl JR (2002) Foetal lung maturation in 11beta-hydroxysteroid dehydrogenase type 1 knockout mice. Horm Metab Res 34(10):545–549

    Article  CAS  PubMed  Google Scholar 

  70. Myatt L, Sun K (2010) Role of fetal membranes in signaling of fetal maturation and parturition. Int J Dev Biol 54(2–3):545–553

    Article  CAS  PubMed  Google Scholar 

  71. Yang Z, Guo C, Zhu P, Li W, Myatt L, Sun K (2007) Role of glucocorticoid receptor and CCAAT/enhancer-binding protein alpha in the feed-forward induction of 11beta-hydroxysteroid dehydrogenase type 1 expression by cortisol in human amnion fibroblasts. J Endocrinol 195(2):241–253

    Article  CAS  PubMed  Google Scholar 

  72. Sun K, Myatt L (2003) Enhancement of glucocorticoid-induced 11beta-hydroxysteroid dehydrogenase type 1 expression by proinflammatory cytokines in cultured human amnion fibroblasts. Endocrinology 144(12):5568–5577

    Article  CAS  PubMed  Google Scholar 

  73. Reichardt HM, Schutz G (1996) Feedback control of glucocorticoid production is established during fetal development. Mol Med 2(6):735–744

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barlow SM, Morrison PJ, Sullivan FM (1974) Plasma corticosterone levels during pregnancy in the mouse: the relative contributions of the adrenal glands and foeto-placental units. J Endocrinol 60(3):473–483

    Article  CAS  PubMed  Google Scholar 

  75. Hirasawa G, Takeyama J, Sasano H, Fukushima K, Suzuki T, Muramatu Y, Darnel AD, Kaneko C, Hiwatashi N, Toyota T, Nagura H, Krozowski ZS (2000) 11Beta-hydroxysteroid dehydrogenase type II and mineralocorticoid receptor in human placenta. J Clin Endocrinol Metab 85(3):1306–1309

    CAS  PubMed  Google Scholar 

  76. Thompson A, Han VK, Yang K (2002) Spatial and temporal patterns of expression of 11beta-hydroxysteroid dehydrogenase types 1 and 2 messenger RNA and glucocorticoid receptor protein in the murine placenta and uterus during late pregnancy. Biol Reprod 67(6):1708–1718

    Article  CAS  PubMed  Google Scholar 

  77. Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG, Moran CM, Szumska D, Michailidou Z, Richardson J, Owen E, Watt A, Morrison H, Forrester LM, Bhattacharya S, Holmes MC, Chapman KE (2013) Glucocorticoid receptor is required for foetal heart maturation. Hum Mol Genet 22(16):3269–3282

    Article  CAS  PubMed  Google Scholar 

  78. Reul JM, Pearce PT, Funder JW, Krozowski ZS (1989) Type I and type II corticosteroid receptor gene expression in the rat: effect of adrenalectomy and dexamethasone administration. Mol Endocrinol 3(10):1674–1680. doi:10.1210/mend-3-10-1674

    Article  CAS  PubMed  Google Scholar 

  79. Ashwell JD, Lu FW, Vacchio MS (2000) Glucocorticoids in T cell development and function*. Annu Rev Immunol 18:309–345

    Article  CAS  PubMed  Google Scholar 

  80. Brewer JA, Sleckman BP, Swat W, Muglia LJ (2002) Green fluorescent protein-glucocorticoid receptor knockin mice reveal dynamic receptor modulation during thymocyte development. J Immunol 169(3):1309–1318

    Article  CAS  PubMed  Google Scholar 

  81. Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM, Pei D, Cheng C, Pui CH, Relling MV, Janka-Schaub GE, Pieters R, Evans WE (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351(6):533–542

    Article  CAS  PubMed  Google Scholar 

  82. Hulleman E, Kazemier KM, Holleman A, VanderWeele DJ, Rudin CM, Broekhuis MJ, Evans WE, Pieters R, Den Boer ML (2009) Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113(9):2014–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V, Dambrot C, Devalla HD, Davis RP, Mastroberardino PG, Atsma DE, Passier R, Mummery CL (2015) Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep 13(4):733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rog-Zielinska EA, Craig MA, Manning JR, Richardson RV, Gowans GJ, Dunbar DR, Gharbi K, Kenyon CJ, Holmes MC, Hardie DG, Smith GL, Chapman KE (2014) Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1alpha. Cell Death Differ 22(7):1106–1116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Thomassin H, Flavin M, Espinas ML, Grange T (2001) Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 20(8):1974–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seckl JR, Holmes MC (2007) Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab 3(6):479–488. doi:10.1038/ncpendmet0515

    Article  CAS  PubMed  Google Scholar 

  87. Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32:1073–1086

    Article  CAS  PubMed  Google Scholar 

  88. Vallee M, Mayo W, Dellu F, LeMoal M, Simon H, Maccari S (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17:2626–2636

    CAS  PubMed  Google Scholar 

  89. Henry C, Kabbaj M, Simon H, Le Moal M, Maccari S (1994) Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. J Neuroendocrinol 6(3):341–345

    Article  CAS  PubMed  Google Scholar 

  90. Pincus-Knackstedt MK, Joachim RA, Blois SM, Douglas AJ, Orsal AS, Klapp BF, Wahn U, Hamelmann E, Arck PC (2006) Prenatal stress enhances susceptibility of murine adult offspring toward airway inflammation. J Immunol 177(12):8484–8492

    Article  CAS  PubMed  Google Scholar 

  91. Stirrat LI, Reynolds RM (2015) The effect of fetal growth and nutrient stresses on steroid pathways. J Steroid Biochem Mol Biol 160:214–20. doi:10.1016/j.jsbmb.2015.07.003

  92. Reynolds RM (2013) Programming effects of glucocorticoids. Clin Obstet Gynecol 56(3):602–609

    Article  PubMed  Google Scholar 

  93. Louey S, Thornburg KL (2005) The prenatal environment and later cardiovascular disease. Early Hum Dev 81:745–751

    Article  PubMed  Google Scholar 

  94. Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol 10(7):391–402

    Article  CAS  PubMed  Google Scholar 

  95. White PC, Agarwal AK, Nunez BS, Giacchetti G, Mantero F, Stewart PM (2000) Genotype-phenotype correlations of mutations and polymorphisms in HSD11B2, the gene encoding the kidney isozyme of 11beta-hydroxysteroid dehydrogenase. Endocr Res 26:771–780

    Article  CAS  PubMed  Google Scholar 

  96. Solano ME, Kowal MK, O’Rourke GE, Horst AK, Modest K, Plosch T, Barikbin R, Remus CC, Berger RG, Jago C, Ho H, Sass G, Parker VJ, Lydon JP, DeMayo FJ, Hecher K, Karimi K, Arck PC (2015) Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation. J Clin Invest 125(4):1726–1738. doi:10.1172/JCI68140

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nugent JL, Wareing M, Palin V, Sibley CP, Baker PN, Ray DW, Farrow SN, Jones RL (2013) Chronic glucocorticoid exposure potentiates placental chorionic plate artery constriction: implications for aberrant fetoplacental vascular resistance in fetal growth restriction. Endocrinology 154(2):876–887

    Article  CAS  PubMed  Google Scholar 

  98. Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101(10):2174–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yehuda R, Engel SM, Brand SR, Seckl J, Marcus SM, Berkowitz G (2005) Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. J Clin Endocrinol Metab 90:4115–4118

    Article  CAS  PubMed  Google Scholar 

  100. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schutz G (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9(13):1608–1621

    Article  CAS  PubMed  Google Scholar 

  101. Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD, Lightman SL (2000) Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc Natl Acad Sci U S A 97:5645–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Veru F, Laplante DP, Luheshi G, King S (2014) Prenatal maternal stress exposure and immune function in the offspring. Stress 17(2):133–148. doi:10.3109/10253890.2013.876404

    Article  CAS  PubMed  Google Scholar 

  103. Wyrwoll CS, Holmes MC, Seckl JR (2011) 11b-Hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 32:265–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335(1):2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, Goldfarb RH, Kitson RP, Miller AH, Spencer RL, Weiss JM (1997) The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Brain Res Rev 23(1–2):79–133

    Article  CAS  PubMed  Google Scholar 

  106. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12(12):1559–1566

    Article  CAS  PubMed  Google Scholar 

  107. Brydges NM, Jin R, Seckl J, Holmes MC, Drake AJ, Hall J (2014) Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood. Brain Behav 4(1):4–13

    Article  PubMed  Google Scholar 

  108. Cai G, Ziko I, Barwood J, Soch A, Sominsky L, Molero JC, Spencer SJ (2016) Overfeeding during a critical postnatal period exacerbates hypothalamic-pituitary-adrenal axis responses to immune challenge: a role for adrenal melanocortin 2 receptors. Sci Rep 6:21097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fuenfer MM, Herson VC, Raye JR, Woronick CL, Eisenfeld L, Ingardia CJ, Block CF, Krause PJ (1987) The effect of betamethasone on neonatal neutrophil chemotaxis. Pediatr Res 22(2):150–153

    Article  CAS  PubMed  Google Scholar 

  110. Barak M, Cohen A, Herschkowitz S (1992) Total leukocyte and neutrophil count changes associated with antenatal betamethasone administration in premature infants. Acta Paediatr 81(10):760–763

    Article  CAS  PubMed  Google Scholar 

  111. Caldas JP, Vilela MM, Braghini CA, Mazzola TN, Marba ST (2012) Antenatal maternal corticosteroid administration and markers of oxidative stress and inflammation in umbilical cord blood from very low birth weight preterm newborn infants. J Pediatr (Rio J) 88(1):61–66

    Article  Google Scholar 

  112. Kumar P, Venners SA, Fu L, Pearson C, Ortiz K, Wang X (2011) Association of antenatal steroid use with cord blood immune biomarkers in preterm births. Early Hum Dev 87(8):559–564. doi:10.1016/j.earlhumdev.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kavelaars A, van der Pompe G, Bakker JM, van Hasselt PM, Cats B, Visser GH, Heijnen CJ (1999) Altered immune function in human newborns after prenatal administration of betamethasone: enhanced natural killer cell activity and decreased T cell proliferation in cord blood. Pediatr Res 45(3):306–312

    Article  CAS  PubMed  Google Scholar 

  114. Chabra S, Cottrill C, Rayens MK, Cross R, Lipke D, Bruce M (1998) Lymphocyte subsets in cord blood of preterm infants: effect of antenatal steroids. Biol Neonate 74(3):200–207

    Article  CAS  PubMed  Google Scholar 

  115. Agakidis C, Sarafidis K, Tzimouli V, Agakidou E, Taparkou A, Kanakoudi-Tsakalidou F, Soubasi-Griva V (2009) Antenatal betamethasone does not influence lymphocyte apoptosis in preterm neonates. Am J Perinatol 26(7):485–490

    Article  PubMed  Google Scholar 

  116. Michie CA, Hasson N, Tulloh R (1998) The neonatal thymus and antenatal steroids. Arch Dis Child Fetal Neonatal Ed 79(2):F159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tsuda K, Iwasaki S, Horiguchi H, Mori M, Nishimaki S, Seki K, Taguri M, Yokota S, Ishiwada N (2012) Immune response to Haemophilus influenzae type b conjugate vaccine in preterm infants. Pediatr Int 54(1):64–67. doi:10.1111/j.1442-200X.2011.03505.x

    Article  CAS  PubMed  Google Scholar 

  118. Slack MH, Schapira D, Thwaites RJ, Schapira C, Bamber J, Burrage M, Southern J, Andrews N, Miller E (2004) Acellular pertussis vaccine given by accelerated schedule: response of preterm infants. Arch Dis Child Fetal Neonatal Ed 89(1):F57–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. O’Connor TG, Winter MA, Hunn J, Carnahan J, Pressman EK, Glover V, Robertson-Blackmore E, Moynihan JA, Lee FE, Caserta MT (2013) Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain Behav Immun 32:21–28. doi:10.1016/j.bbi.2013.02.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Wright RJ, Visness CM, Calatroni A, Grayson MH, Gold DR, Sandel MT, Lee-Parritz A, Wood RA, Kattan M, Bloomberg GR, Burger M, Togias A, Witter FR, Sperling RS, Sadovsky Y, Gern JE (2010) Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort. Am J Respir Crit Care Med 182(1):25–33. doi:10.1164/rccm.200904-0637OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Andersson NW, Li Q, Mills CW, Ly J, Nomura Y, Chen J (2016) Influence of prenatal maternal stress on umbilical cord blood cytokine levels. Arch Womens Ment Health. doi:10.1007/s00737-016-0607-710.1007/s00737-016-0607-7

    PubMed  PubMed Central  Google Scholar 

  122. Peters JL, Cohen S, Staudenmayer J, Hosen J, Platts-Mills TA, Wright RJ (2012) Prenatal negative life events increases cord blood IgE: interactions with dust mite allergen and maternal atopy. Allergy 67(4):545–551. doi:10.1111/j.1398-9995.2012.02791.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lin YC, Wen HJ, Lee YL, Guo YL (2004) Are maternal psychosocial factors associated with cord immunoglobulin E in addition to family atopic history and mother immunoglobulin E? Clin Exp Allergy 34(4):548–554. doi:10.1111/j.1365-2222.2004.1928.xCEA1928

    Article  PubMed  Google Scholar 

  124. Wen HJ, Wang YJ, Lin YC, Chang CC, Shieh CC, Lung FW, Guo YL (2011) Prediction of atopic dermatitis in 2-yr-old children by cord blood IgE, genetic polymorphisms in cytokine genes, and maternal mentality during pregnancy. Pediatr Allergy Immunol 22(7):695–703. doi:10.1111/j.1399-3038.2011.01177.x

    Article  PubMed  Google Scholar 

  125. Mathilda Chiu YH, Coull BA, Cohen S, Wooley A, Wright RJ (2012) Prenatal and postnatal maternal stress and wheeze in urban children: effect of maternal sensitization. Am J Respir Crit Care Med 186(2):147–154. doi:10.1164/rccm.201201-0162OC

    Article  PubMed Central  Google Scholar 

  126. Chiu YH, Coull BA, Sternthal MJ, Kloog I, Schwartz J, Cohen S, Wright RJ (2014) Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. J Allergy Clin Immunol 133(3):713–722 e714. doi:10.1016/j.jaci.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  127. Reyes M, Perzanowski MS, Whyatt RM, Kelvin EA, Rundle AG, Diaz DM, Hoepner L, Perera FP, Rauh V, Miller RL (2011) Relationship between maternal demoralization, wheeze, and immunoglobulin E among inner-city children. Ann Allergy Asthma Immunol 107(1):42–49 e41. doi:10.1016/j.anai.2011.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  128. Guxens M, Sonnenschein-van der Voort AM, Tiemeier H, Hofman A, Sunyer J, de Jongste JC, Jaddoe VW, Duijts L (2014) Parental psychological distress during pregnancy and wheezing in preschool children: the Generation R Study. J Allergy Clin Immunol 133(1):59–67 e51-12. doi:10.1016/j.jaci.2013.04.044

    Article  PubMed  Google Scholar 

  129. Lee A, Mathilda Chiu YH, Rosa MJ, Jara C, Wright RO, Coull BA, Wright RJ (2016) Prenatal and postnatal stress and asthma in children: temporal- and sex-specific associations. J Allergy Clin Immunol. doi:10.1016/j.jaci.2016.01.014

    Google Scholar 

  130. Larsen AD, Schlunssen V, Christensen BH, Bonde JP, Obel C, Thulstrup AM, Hannerz H, Hougaard KS (2014) Exposure to psychosocial job strain during pregnancy and odds of asthma and atopic dermatitis among 7-year old children—a prospective cohort study. Scand J Work Environ Health 40(6):639–648. doi:10.5271/sjweh.3452

    Article  PubMed  Google Scholar 

  131. Pole JD, Mustard CA, To T, Beyene J, Allen AC (2010) Antenatal steroid therapy for fetal lung maturation and the subsequent risk of childhood asthma: a longitudinal analysis. J Pregnancy 2010:789748

    Article  PubMed  PubMed Central  Google Scholar 

  132. Khashan AS, Wicks S, Dalman C, Henriksen TB, Li J, Mortensen PB, Kenny LC (2012) Prenatal stress and risk of asthma hospitalization in the offspring: a Swedish population-based study. Psychosom Med 74(6):635–641. doi:10.1097/PSY.0b013e31825ac5e7

    Article  PubMed  Google Scholar 

  133. Fang F, Hoglund CO, Arck P, Lundholm C, Langstrom N, Lichtenstein P, Lekander M, Almqvist C (2011) Maternal bereavement and childhood asthma-analyses in two large samples of Swedish children. PLoS ONE 6(11), e27202. doi:10.1371/journal.pone.0027202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hartwig IR, Bruenahl CA, Ramisch K, Keil T, Inman M, Arck PC, Pincus M (2014) Reduced levels of maternal progesterone during pregnancy increase the risk for allergic airway diseases in females only. J Mol Med (Berl) 92(10):1093–1104. doi:10.1007/s00109-014-1167-9

    Article  CAS  Google Scholar 

  135. Liu X, Olsen J, Agerbo E, Yuan W, Sigsgaard T, Li J (2015) Prenatal stress and childhood asthma in the offspring: role of age at onset. Eur J Public Health 25(6):1042–1046. doi:10.1093/eurpub/ckv129

    Article  PubMed  Google Scholar 

  136. Vermillion ST, Soper DE, Newman RB (2000) Neonatal sepsis and death after multiple courses of antenatal betamethasone therapy. Am J Obstet Gynecol 183(4):810–814

    Article  CAS  PubMed  Google Scholar 

  137. Henriksen RE, Thuen F (2015) Marital quality and stress in pregnancy predict the risk of infectious disease in the offspring: the Norwegian mother and child cohort study. PLoS ONE 10(9), e0137304. doi:10.1371/journal.pone.0137304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Smolders-de Haas H, Neuvel J, Schmand B, Treffers PE, Koppe JG, Hoeks J (1990) Physical development and medical history of children who were treated antenatally with corticosteroids to prevent respiratory distress syndrome: a 10- to 12-year follow-up. Pediatrics 86(1):65–70

    CAS  PubMed  Google Scholar 

  139. Nielsen NM, Hansen AV, Simonsen J, Hviid A (2011) Prenatal stress and risk of infectious diseases in offspring. Am J Epidemiol 173(9):990–997. doi:10.1093/aje/kwq492

    Article  PubMed  Google Scholar 

  140. Greene NH, Pedersen LH, Liu S, Olsen J (2013) Prenatal prescription corticosteroids and offspring diabetes: a national cohort study. Int J Epidemiol 42(1):186–193

    Article  PubMed  Google Scholar 

  141. Virk J, Li J, Vestergaard M, Obel C, Lu M, Olsen J (2010) Early life disease programming during the preconception and prenatal period: making the link between stressful life events and type-1 diabetes. PLoS ONE 5(7), e11523. doi:10.1371/journal.pone.0011523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Li P, Tong Y, Yang H, Zhou S, Xiong F, Huo T, Mao M (2014) Mitochondrial translocation of human telomerase reverse transcriptase in cord blood mononuclear cells of newborns with gestational diabetes mellitus mothers. Diabetes Res Clin Pract 103(2):310–318

    Article  CAS  PubMed  Google Scholar 

  143. Bermejo JL, Sundquist J, Hemminki K (2007) Risk of cancer among the offspring of women who experienced parental death during pregnancy. Cancer Epidemiol Biomarkers Prev 16(11):2204–2206. doi:10.1158/1055-9965.EPI-07-0638

    Article  PubMed  Google Scholar 

  144. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, Shen-Orr S, Dekker CL, Swan GE, Butte AJ, Maecker HT, Davis MM (2015) Variation in the human immune system is largely driven by non-heritable influences. Cell 160(1–2):37–47. doi:10.1016/j.cell.2014.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bonnelykke K, Pipper CB, Bisgaard H (2010) Transfer of maternal IgE can be a common cause of increased IgE levels in cord blood. J Allergy Clin Immunol 126(3):657–663. doi:10.1016/j.jaci.2010.06.027

    Article  CAS  PubMed  Google Scholar 

  146. Veru F, Dancause K, Laplante DP, King S, Luheshi G (2015) Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines, and a Th2 shift in adolescents: Project Ice Storm. Physiol Behav 144:137–145. doi:10.1016/j.physbeh.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  147. Entringer S, Kumsta R, Nelson EL, Hellhammer DH, Wadhwa PD, Wust S (2008) Influence of prenatal psychosocial stress on cytokine production in adult women. Dev Psychobiol 50(6):579–587. doi:10.1002/dev.20316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liang Y, Chang C, Lu Q (2015) The genetics and epigenetics of atopic dermatitis—filaggrin and other polymorphisms. Clin Rev Allergy Immunol. doi:10.1007/s12016-015-8508-5

    PubMed  Google Scholar 

  149. Liang L, Willis-Owen SA, Laprise C, Wong KC, Davies GA, Hudson TJ, Binia A, Hopkin JM, Yang IV, Grundberg E, Busche S, Hudson M, Ronnblom L, Pastinen TM, Schwartz DA, Lathrop GM, Moffatt MF, Cookson WO (2015) An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 520(7549):670–674. doi:10.1038/nature14125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tolosa E, Ashwell JD (1999) Thymus-derived glucocorticoids and the regulation of antigen-specific T-cell development. Neuroimmunomodulation 6(1–2):90–96

    Article  CAS  PubMed  Google Scholar 

  151. Breant B, Gesina E, Blondeau B (2006) Nutrition, glucocorticoids and pancreas development. Horm Res 65(Suppl 3):98–104

    Article  CAS  PubMed  Google Scholar 

  152. Santner-Nanan B, Straubinger K, Hsu P, Parnell G, Tang B, Xu B, Makris A, Hennessy A, Peek MJ, Busch DH, da Costa CP, Nanan R (2013) Fetal-maternal alignment of regulatory T cells correlates with IL-10 and Bcl-2 upregulation in pregnancy. J Immunol 191(1):145–153. doi:10.4049/jimmunol.1203165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Malhotra I, Ouma J, Wamachi A, Kioko J, Mungai P, Omollo A, Elson L, Koech D, Kazura JW, King CL (1997) In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J Clin Invest 99(7):1759–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stelzer IA, Thiele K, Solano ME (2015) Maternal microchimerism: lessons learned from murine models. J Reprod Immunol 108:12–25. doi:10.1016/j.jri.2014.12.007

    Article  PubMed  Google Scholar 

  155. Croy BA (2014) Reproductive immunology issue one: cellular and molecular biology. Cell Mol Immunol 11(5):405–406. doi:10.1038/cmi.2014.64

    Article  PubMed  PubMed Central  Google Scholar 

  156. Coskun S, Chao H, Vasavada H, Heydari K, Gonzales N, Zhou X, de Crombrugghe B, Hirschi KK (2014) Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Rep 9(2):581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133(19):3733–3744

    Article  CAS  PubMed  Google Scholar 

  158. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ (2013) Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12(4):413–425

    Article  CAS  PubMed  Google Scholar 

  159. Igarashi H, Kouro T, Yokota T, Comp PC, Kincade PW (2001) Age and stage dependency of estrogen receptor expression by lymphocyte precursors. Proc Natl Acad Sci U S A 98(26):15131–15136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kollet O, Vagima Y, D’Uva G, Golan K, Canaani J, Itkin T, Gur-Cohen S, Kalinkovich A, Caglio G, Medaglia C, Ludin A, Lapid K, Shezen E, Neufeld-Cohen A, Varol D, Chen A, Lapidot T (2013) Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia 27(10):2006–2015

    Article  CAS  PubMed  Google Scholar 

  161. Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8(3):365–375

    Article  CAS  PubMed  Google Scholar 

  162. Medvinsky A, Rybtsov S, Taoudi S (2011) Embryonic origin of the adult hematopoietic system: advances and questions. Development 138(6):1017–1031

    Article  CAS  PubMed  Google Scholar 

  163. Heinig K, Sage F, Robin C, Sperandio M (2015) Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny. Cardiovasc Res 107(3):352–363

    Article  CAS  PubMed  Google Scholar 

  164. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551

    Article  PubMed  CAS  Google Scholar 

  165. Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Conway S, Orkin SH, Yoder MC, Mikkola HK (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2(3):252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S, Ansell J, Medvinsky A (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129(21):4891–4899

    CAS  PubMed  Google Scholar 

  167. Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML, Medvinsky A (2011) Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med 208(12):2417–2427. doi:10.1084/jem.20111688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Holsapple MP, West LJ, Landreth KS (2003) Species comparison of anatomical and functional immune system development. Birth Defects Res B Dev Reprod Toxicol 68(4):321–334. doi:10.1002/bdrb.10035

    Article  CAS  PubMed  Google Scholar 

  169. Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A, Pinho S, Ciero P, Nakahara F, Ma’ayan A, Bergman A, Merad M, Frenette PS (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351(6269):176–180

    Article  CAS  PubMed  Google Scholar 

  170. Ema H, Nakauchi H (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95(7):2284–2288

    CAS  PubMed  Google Scholar 

  171. Kinoshita T, Sekiguchi T, Xu MJ, Ito Y, Kamiya A, Tsuji K, Nakahata T, Miyajima A (1999) Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc Natl Acad Sci U S A 96(13):7265–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Strasser A, Rolink A, Melchers F (1989) One synchronous wave of B cell development in mouse fetal liver changes at day 16 of gestation from dependence to independence of a stromal cell environment. J Exp Med 170(6):1973–1986

    Article  CAS  PubMed  Google Scholar 

  173. Paige CJ, Kincade PW, Shinefeld LA, Sato VL (1981) Precursors of murine B lymphocytes. Physical and functional characterization, and distinctions from myeloid stem cells. J Exp Med 153(1):154–165

    Article  CAS  PubMed  Google Scholar 

  174. Lekva T, Bollerslev J, Kristo C, Olstad OK, Ueland T, Jemtland R (2009) The glucocorticoid-induced leucine zipper gene (GILZ) expression decreases after successful treatment of patients with endogenous Cushing’s syndrome and may play a role in glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 95(1):246–255

    Article  PubMed  CAS  Google Scholar 

  175. Lindton B, Markling L, Ringden O, Westgren M (2002) In vitro studies of haematopoietic colony-forming capacity of human fetal liver cells at exposure to cytotoxic and immunomodulatory drugs. Fetal Diagn Ther 17(2):104–109

    Article  PubMed  Google Scholar 

  176. Flygare J, Rayon Estrada V, Shin C, Gupta S, Lodish HF (2011) HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood 117(12):3435–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lee HY, Gao X, Barrasa MI, Li H, Elmes RR, Peters LL, Lodish HF (2015) PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 522(7557):474–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, Chaturvedi V, Strong BS, Qualls JE, Steinbrecher KA, Kalfa TA, Shaaban AF, Way SS (2013) Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504(7478):158–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sobrian SK, Vaughn VT, Ashe WK, Markovic B, Djuric V, Jankovic BD (1997) Gestational exposure to loud noise alters the development and postnatal responsiveness of humoral and cellular components of the immune system in offspring. Environ Res 73(1–2):227–241. doi:10.1006/enrs.1997.3734

    Article  CAS  PubMed  Google Scholar 

  180. Llorente E, Brito ML, Machado P, Gonzalez MC (2002) Effect of prenatal stress on the hormonal response to acute and chronic stress and on immune parameters in the offspring. J Physiol Biochem 58(3):143–149

    Article  CAS  PubMed  Google Scholar 

  181. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, Ono N, Kronenberg HM, Frenette PS (2014) Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 29(3):340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li A, Hardy R, Stoner S, Tuckermann J, Seibel M, Zhou H (2013) Deletion of mesenchymal glucocorticoid receptor attenuates embryonic lung development and abdominal wall closure. PLoS ONE 8(5), e63578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Korakaki E, Gourgiotis D, Aligizakis A, Manoura A, Hatzidaki E, Giahnakis E, Marmarinos A, Kalmanti M, Giannakopoulou C (2007) Levels of bone collagen markers in preterm infants: relation to antenatal glucocorticoid treatment. J Bone Miner Metab 25(3):172–178

    Article  CAS  PubMed  Google Scholar 

  184. Fonseca L, Ramin SM, Mele L, Wapner RJ, Johnson F, Peaceman AM, Sorokin Y, Dudley DJ, Spong CY, Leveno KJ, Caritis SN, Miodovnik M, Mercer B, Thorp JM, O’Sullivan MJ, Carpenter MW, Rouse DJ, Sibai B (2009) Bone metabolism in fetuses of pregnant women exposed to single and multiple courses of corticosteroids. Obstet Gynecol 114(1):38–44

    Article  PubMed  PubMed Central  Google Scholar 

  185. Vitale C, Cottalasso F, Montaldo E, Moretta L, Mingari MC (2008) Methylprednisolone induces preferential and rapid differentiation of CD34+ cord blood precursors toward NK cells. Int Immunol 20(4):565–575

    Article  CAS  PubMed  Google Scholar 

  186. Talaber G, Jondal M, Okret S (2015) Local glucocorticoid production in the thymus. Steroids 103:58–63. doi:10.1016/j.steroids.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  187. Vacchio MS, Papadopoulos V, Ashwell JD (1994) Steroid production in the thymus: implications for thymocyte selection. J Exp Med 179(6):1835–1846

    Article  CAS  PubMed  Google Scholar 

  188. Taves MD, Plumb AW, Sandkam BA, Ma C, Van Der Gugten JG, Holmes DT, Close DA, Abraham N, Soma KK (2015) Steroid profiling reveals widespread local regulation of glucocorticoid levels during mouse development. Endocrinology 156(2):511–522. doi:10.1210/en.2013-1606

    Article  PubMed  CAS  Google Scholar 

  189. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756):555–556

    Article  CAS  PubMed  Google Scholar 

  190. Wiegers GJ, Kaufmann M, Tischner D, Villunger A (2011) Shaping the T-cell repertoire: a matter of life and death. Immunol Cell Biol 89(1):33–39. doi:10.1038/icb.2010.127

    Article  PubMed  Google Scholar 

  191. Talaber G, Tuckermann JP, Okret S (2015) ACTH controls thymocyte homeostasis independent of glucocorticoids. FASEB J 29(6):2526–2534. doi:10.1096/fj.14-268508

    Article  CAS  PubMed  Google Scholar 

  192. Tolosa E, King LB, Ashwell JD (1998) Thymocyte glucocorticoid resistance alters positive selection and inhibits autoimmunity and lymphoproliferative disease in MRL-lpr/lpr mice. Immunity 8(1):67–76

    Article  CAS  PubMed  Google Scholar 

  193. Lu FW, Yasutomo K, Goodman GB, McHeyzer-Williams LJ, McHeyzer-Williams MG, Germain RN, Ashwell JD (2000) Thymocyte resistance to glucocorticoids leads to antigen-specific unresponsiveness due to “holes” in the T cell repertoire. Immunity 12(2):183–192

    Article  CAS  PubMed  Google Scholar 

  194. Mittelstadt PR, Monteiro JP, Ashwell JD (2012) Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J Clin Invest 122(7):2384–2394. doi:10.1172/JCI63067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Cole TJ, Myles K, Purton JF, Brereton PS, Solomon NM, Godfrey DI, Funder JW (2001) GRKO mice express an aberrant dexamethasone-binding glucocorticoid receptor, but are profoundly glucocorticoid resistant. Mol Cell Endocrinol 173(1–2):193–202

    Article  CAS  PubMed  Google Scholar 

  196. Laryea G, Schutz G, Muglia LJ (2013) Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Mol Endocrinol 27(10):1655–1665. doi:10.1210/me.2013-1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Purton JF, Boyd RL, Cole TJ, Godfrey DI (2000) Intrathymic T cell development and selection proceeds normally in the absence of glucocorticoid receptor signaling. Immunity 13(2):179–186

    Article  CAS  PubMed  Google Scholar 

  198. Purton JF, Zhan Y, Liddicoat DR, Hardy CL, Lew AM, Cole TJ, Godfrey DI (2002) Glucocorticoid receptor deficient thymic and peripheral T cells develop normally in adult mice. Eur J Immunol 32(12):3546–3555. doi:10.1002/1521-4141(200212)32:12<3546::AID-IMMU3546>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  199. Liddicoat DR, Purton JF, Cole TJ, Godfrey DI (2014) Glucocorticoid-mediated repression of T-cell receptor signalling is impaired in glucocorticoid receptor exon 2-disrupted mice. Immunol Cell Biol 92(2):148–155. doi:10.1038/icb.2013.76

    Article  CAS  PubMed  Google Scholar 

  200. Diepenbruck I, Much CC, Krumbholz A, Kolster M, Thieme R, Thieme D, Diepenbruck S, Solano ME, Arck PC, Tolosa E (2013) Effect of prenatal steroid treatment on the developing immune system. J Mol Med (Berl) 91(11):1293–1302. doi:10.1007/s00109-013-1069-2

    Article  CAS  Google Scholar 

  201. Hartwig IR, Sly PD, Schmidt LA, van Lieshout RJ, Bienenstock J, Holt PG, Arck PC (2014) Prenatal adverse life events increase the risk for atopic diseases in children, which is enhanced in the absence of a maternal atopic predisposition. J Allergy Clin Immunol 134(1):160–169

    Article  PubMed  Google Scholar 

  202. D’Adamio F, Zollo O, Moraca R, Ayroldi E, Bruscoli S, Bartoli A, Cannarile L, Migliorati G, Riccardi C (1997) A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity 7(6):803–812

    Article  PubMed  Google Scholar 

  203. Delfino DV, Agostini M, Spinicelli S, Vito P, Riccardi C (2004) Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice. Blood 104(13):4134–4141. doi:10.1182/blood-2004-03-0920

    Article  CAS  PubMed  Google Scholar 

  204. Delfino DV, Agostini M, Spinicelli S, Vacca C, Riccardi C (2006) Inhibited cell death, NF-kappaB activity and increased IL-10 in TCR-triggered thymocytes of transgenic mice overexpressing the glucocorticoid-induced protein GILZ. Int Immunopharmacol 6(7):1126–1134. doi:10.1016/j.intimp.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  205. Calmette J, Ellouze M, Tran T, Karaki S, Ronin E, Capel F, Pallardy M, Bachelerie F, Krzysiek R, Emilie D, Schlecht-Louf G, Godot V (2014) Glucocorticoid-induced leucine zipper enhanced expression in dendritic cells is sufficient to drive regulatory T cells expansion in vivo. J Immunol 193(12):5863–5872. doi:10.4049/jimmunol.1400758

    Article  CAS  PubMed  Google Scholar 

  206. Bereshchenko O, Coppo M, Bruscoli S, Biagioli M, Cimino M, Frammartino T, Sorcini D, Venanzi A, Di Sante M, Riccardi C (2014) GILZ promotes production of peripherally induced Treg cells and mediates the crosstalk between glucocorticoids and TGF-beta signaling. Cell Rep 7(2):464–475. doi:10.1016/j.celrep.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  207. Bruscoli S, Biagioli M, Sorcini D, Frammartino T, Cimino M, Sportoletti P, Mazzon E, Bereshchenko O, Riccardi C (2015) Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood 126(15):1790–1801. doi:10.1182/blood-2015-03-631580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hoppstadter J, Kessler SM, Bruscoli S, Huwer H, Riccardi C, Kiemer AK (2015) Glucocorticoid-induced leucine zipper: a critical factor in macrophage endotoxin tolerance. J Immunol 194(12):6057–6067. doi:10.4049/jimmunol.1403207

    Article  PubMed  CAS  Google Scholar 

  209. Philips A, Maira M, Mullick A, Chamberland M, Lesage S, Hugo P, Drouin J (1997) Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol 17(10):5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, Hogquist KA (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208(6):1279–1289. doi:10.1084/jem.20110308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhou T, Cheng J, Yang P, Wang Z, Liu C, Su X, Bluethmann H, Mountz JD (1996) Inhibition of Nur77/Nurr1 leads to inefficient clonal deletion of self-reactive T cells. J Exp Med 183(4):1879–1892

    Article  CAS  PubMed  Google Scholar 

  212. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401. doi:10.1126/science.1075958

    Article  CAS  PubMed  Google Scholar 

  213. Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163(4):975–987. doi:10.1016/j.cell.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  214. Maranville JC, Luca F, Richards AL, Wen X, Witonsky DB, Baxter S, Stephens M, Di Rienzo A (2011) Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 7(7), e1002162. doi:10.1371/journal.pgen.1002162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fletcher AL, Lowen TE, Sakkal S, Reiseger JJ, Hammett MV, Seach N, Scott HS, Boyd RL, Chidgey AP (2009) Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol 183(2):823–831. doi:10.4049/jimmunol.0900225

    Article  CAS  PubMed  Google Scholar 

  216. Drake AJ, Seckl JR (2012) Transmission of programming effects across generations. Pediatr Endocrinol Rev 9:566–578

    Google Scholar 

  217. Meaney MJ, Ferguson-Smith AC (2010) Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 13(11):1313–1318

    Article  CAS  PubMed  Google Scholar 

  218. Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol 10(7):403–411

    Article  CAS  PubMed  Google Scholar 

  219. Saffery R, Novakovic B (2014) Epigenetics as the mediator of fetal programming of adult onset disease: what is the evidence? Acta Obstet Gynecol Scand 93(11):1090–1098. doi:10.1111/aogs.12431

    Article  PubMed  Google Scholar 

  220. Oh IH, Humphries RK (2012) Concise review: multidimensional regulation of the hematopoietic stem cell state. Stem Cells 30(1):82–88

    Article  CAS  PubMed  Google Scholar 

  221. Taiwo O, Wilson GA, Emmett W, Morris T, Bonnet D, Schuster E, Adejumo T, Beck S, Pearce DJ (2013) DNA methylation analysis of murine hematopoietic side population cells during aging. Epigenetics 8(10):1114–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313):338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41(11):1207–1215. doi:10.1038/ng.463

    Article  PubMed  CAS  Google Scholar 

  224. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204(4):715–722. doi:10.1084/jem.20060750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bartholdy B, Christopeit M, Will B, Mo Y, Barreyro L, Yu Y, Bhagat TD, Okoye-Okafor UC, Todorova TI, Greally JM, Levine RL, Melnick A, Verma A, Steidl U (2014) HSC commitment-associated epigenetic signature is prognostic in acute myeloid leukemia. J Clin Invest 124(3):1158–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Petropoulos S, Matthews SG, Szyf M (2014) Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring. Biol Reprod 90(2):43

    Article  PubMed  CAS  Google Scholar 

  228. Rodriguez RM, Suarez-Alvarez B, Mosen-Ansorena D, Garcia-Peydro M, Fuentes P, Garcia-Leon MJ, Gonzalez-Lahera A, Macias-Camara N, Toribio ML, Aransay AM, Lopez-Larrea C (2015) Regulation of the transcriptional program by DNA methylation during human alphabeta T-cell development. Nucleic Acids Res 43(2):760–774. doi:10.1093/nar/gku1340

    Article  CAS  PubMed  Google Scholar 

  229. Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV (2012) Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149(2):467–482. doi:10.1016/j.cell.2012.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sellars M, Huh JR, Day K, Issuree PD, Galan C, Gobeil S, Absher D, Green MR, Littman DR (2015) Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nat Immunol 16(7):746–754. doi:10.1038/ni.3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Begin P, Nadeau KC (2014) Epigenetic regulation of asthma and allergic disease. Allergy, Asthma Clin Immunol 10(1):27. doi:10.1186/1710-1492-10-271710-1492-10-27

    Article  CAS  Google Scholar 

  232. Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G, Laplante DP, Szyf M, King S (2014) DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLoS ONE 9(9), e107653. doi:10.1371/journal.pone.0107653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Mandal M, Donnelly R, Elkabes S, Zhang P, Davini D, David BT, Ponzio NM (2013) Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav Immun 33:33–45. doi:10.1016/j.bbi.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  234. Galon J, Franchimont D, Hiroi N, Frey G, Boettner A, Ehrhart-Bornstein M, O’Shea JJ, Chrousos GP, Bornstein SR (2002) Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 16(1):61–71. doi:10.1096/fj.01-0245com16/1/61

    Article  CAS  PubMed  Google Scholar 

  235. Busillo JM, Cidlowski JA (2013) The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 24(3):109–119. doi:10.1016/j.tem.2012.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Elenkov IJ (2004) Glucocorticoids and the Th1/Th2 balance. Ann N Y Acad Sci 1024:138–146. doi:10.1196/annals.1321.0101024/1/138

    Article  CAS  PubMed  Google Scholar 

  237. Cannarile L, Fallarino F, Agostini M, Cuzzocrea S, Mazzon E, Vacca C, Genovese T, Migliorati G, Ayroldi E, Riccardi C (2006) Increased GILZ expression in transgenic mice up-regulates Th-2 lymphokines. Blood 107(3):1039–1047. doi:10.1182/blood-2005-05-2183

    Article  CAS  PubMed  Google Scholar 

  238. Lu Y, Ho R, Lim TK, Kuan WS, Goh DY, Mahadevan M, Sim TB, Van Bever HP, Larbi A, Ng TP (2015) Neuropeptide Y may mediate psychological stress and enhance TH2 inflammatory response in asthma. J Allergy Clin Immunol 135(4):1061–1063 e1064. doi:10.1016/j.jaci.2014.10.036

    Article  CAS  PubMed  Google Scholar 

  239. Holgate ST (2008) Pathogenesis of asthma. Clin Exp Allergy 38(6):872–897. doi:10.1111/j.1365-2222.2008.02971.x

    Article  CAS  PubMed  Google Scholar 

  240. Knight DA, Holgate ST (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8(4):432–446

    Article  PubMed  Google Scholar 

  241. Holgate ST, Lackie PM, Howarth PH, Roche WR, Puddicombe SM, Richter A, Wilson SJ, Holloway JW, Davies DE (2001) Invited lecture: activation of the epithelial mesenchymal trophic unit in the pathogenesis of asthma. Int Arch Allergy Immunol 124(1–3):253–258

    CAS  PubMed  Google Scholar 

  242. Bird AD, Choo YL, Hooper SB, McDougall AR, Cole TJ (2014) Mesenchymal glucocorticoid receptor regulates the development of multiple cell layers of the mouse lung. Am J Respir Cell Mol Biol 50(2):419–428. doi:10.1165/rcmb.2013-0169OC

    PubMed  Google Scholar 

  243. Wright RJ (2005) Stress and atopic disorders. J Allergy Clin Immunol 116(6):1301–1306. doi:10.1016/j.jaci.2005.09.050

    Article  PubMed  Google Scholar 

  244. Crompton R, Clifton VL, Bisits AT, Read MA, Smith R, Wright IM (2003) Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J Clin Endocrinol Metab 88(11):5427–5432. doi:10.1210/jc.2003-030377

    Article  CAS  PubMed  Google Scholar 

  245. Theoharides TC, Cochrane DE (2004) Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 146(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  246. Kindlund K, Thomsen SF, Stensballe LG, Skytthe A, Kyvik KO, Backer V, Bisgaard H (2010) Birth weight and risk of asthma in 3-9-year-old twins: exploring the fetal origins hypothesis. Thorax 65(2):146–149. doi:10.1136/thx.2009.117101

    Article  PubMed  Google Scholar 

  247. Nepomnyaschy L, Reichman NE (2006) Low birthweight and asthma among young urban children. Am J Public Health 96(9):1604–1610. doi:10.2105/AJPH.2005.079400

    Article  PubMed  PubMed Central  Google Scholar 

  248. Steffensen FH, Sorensen HT, Gillman MW, Rothman KJ, Sabroe S, Fischer P, Olsen J (2000) Low birth weight and preterm delivery as risk factors for asthma and atopic dermatitis in young adult males. Epidemiology 11(2):185–188

    Article  CAS  PubMed  Google Scholar 

  249. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. doi:10.1016/j.cell.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C (2015) Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 53:233–245. doi:10.1016/j.psyneuen.2015.01.006

    Article  PubMed  Google Scholar 

  251. Van Belle TL, Esplugues E, Liao J, Juntti T, Flavell RA, von Herrath MG (2011) Development of autoimmune diabetes in the absence of detectable IL-17A in a CD8-driven virally induced model. J Immunol 187(6):2915–2922. doi:10.4049/jimmunol.1000180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202(1):33–45. doi:10.1084/jem.20050471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M (2009) Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J 28(18):2812–2824. doi:10.1038/emboj.2009.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Fowles E, Walker L (2009) Maternal predictors of toddler health status. J Spec Pediatr Nurs 14(1):33–40. doi:10.1111/j.1744-6155.2009.00172.x

    Article  PubMed  Google Scholar 

  255. Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347(12):911–920. doi:10.1056/NEJMra020100

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our (MES and ET) research is supported by the German Research Council (DFG), through the KFO296 and by the British Heart Foundation, Medical Research Council and Wellcome Trust (MCH, KEC). We thank D. Riller for excellent graphical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Emilia Solano.

Additional information

This article is a contribution to the special issue on Fetomaternal Cross Talk and its Effect on Pregnancy Maintenance, Maternal and Offspring Health - Guest Editor: Petra Arck

Karen E. Chapman and Eva Tolosa contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solano, M.E., Holmes, M.C., Mittelstadt, P.R. et al. Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 38, 739–763 (2016). https://doi.org/10.1007/s00281-016-0575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0575-z

Keywords