Skip to main content

Advertisement

Molecular imaging of brown adipose tissue in health and disease

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily.

Methods

This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated.

Results

Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18F-FDG, other radiopharmaceuticals such as 99mTc-sestamibi, 123I-metaiodobenzylguanidine (MIBG), 18F-fluorodopa and 18F-14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation.

Conclusion

Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med. 1996;37:1127–9.

    CAS  PubMed  Google Scholar 

  2. Hong TS, Shammas A, Charron M, Zukotynski KA, Drubach LA, Lim R. Brown adipose tissue 18F-FDG uptake in pediatric PET/CT imaging. Pediatr Radiol. 2011;41:759–68. doi:10.1007/s00247-010-1925-y.

    PubMed  Google Scholar 

  3. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging. 2002;29:1393–8. doi:10.1007/s00259-002-0902-6.

    PubMed  Google Scholar 

  4. Cohade C, Mourtzikos KA, Wahl RL. "USA-Fat": prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med. 2003;44:1267–70.

    PubMed  Google Scholar 

  5. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44:170–6.

    CAS  PubMed  Google Scholar 

  6. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52. doi:10.1152/ajpendo.00691.2006.

    CAS  PubMed  Google Scholar 

  7. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17. doi:10.1056/NEJMoa0810780.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8. doi:10.1056/NEJMoa0808718.

    PubMed  Google Scholar 

  9. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25. doi:10.1056/NEJMoa0808949.

    CAS  PubMed  Google Scholar 

  10. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23:3113–20. doi:10.1096/fj.09-133546.

    CAS  PubMed  Google Scholar 

  11. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31. doi:10.2337/db09-0530.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Yeung HW, Grewal RK, Gonen M, Schöder H, Larson SM. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med. 2003;44:1789–96.

    PubMed  Google Scholar 

  13. Truong MT, Erasmus JJ, Munden RF, Marom EM, Sabloff BS, Gladish GW, et al. Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR Am J Roentgenol. 2004;183:1127–32. doi:10.2214/ajr.183.4.1831127.

    PubMed  Google Scholar 

  14. Kim S, Krynyckyi BR, Machac J, Kim CK. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging. 2008;35:984–9. doi:10.1007/s00259-007-0670-4.

    PubMed  Google Scholar 

  15. Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol. 2008;190:1406–9. doi:10.2214/AJR.07.3205.

    PubMed  Google Scholar 

  16. Cheng WY, Zhu ZH, Ouyang M. Patterns and characteristics of brown adipose tissue uptake of 18F-FDG positron emission tomograph/computed tomography imaging. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009;31:370–3.

    CAS  PubMed  Google Scholar 

  17. Stefan N, Pfannenberg C, Häring HU. The importance of brown adipose tissue. N Engl J Med. 2009;361:416–7. author reply 8–21.

    CAS  PubMed  Google Scholar 

  18. Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes. 2009;58:2583–7. doi:10.2337/db09-0833.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299:E601–6. doi:10.1152/ajpendo.00298.2010.

    CAS  PubMed  Google Scholar 

  20. Pace L, Nicolai E, D’Amico D, Ibello F, Della Morte AM, Salvatore B, et al. Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol. 2011;13:1029–35. doi:10.1007/s11307-010-0431-9.

    PubMed  Google Scholar 

  21. Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011;96:192–9. doi:10.1210/jc.2010-0989.

    CAS  PubMed  Google Scholar 

  22. Jacene HA, Cohade CC, Zhang Z, Wahl RL. The relationship between patients’ serum glucose levels and metabolically active brown adipose tissue detected by PET/CT. Mol Imaging Biol. 2011;13:1278–83. doi:10.1007/s11307-010-0379-9.

  23. Yilmaz Y, Ones T, Purnak T, Ozguven S, Kurt R, Atug O, et al. Association between the presence of brown adipose tissue and non-alcoholic fatty liver disease in adult humans. Aliment Pharmacol Ther. 2011;34:318–23. doi:10.1111/j.1365-2036.2011.04723.x.

    CAS  PubMed  Google Scholar 

  24. Huang YC, Chen TB, Hsu CC, Li SH, Wang PW, Lee BF, et al. The relationship between brown adipose tissue activity and neoplastic status: an (18)F-FDG PET/CT study in the tropics. Lipids Health Dis. 2011;10:238. doi:10.1186/1476-511X-10-238.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Skillen A, Currie GM, Wheat JM. Thermal control of brown adipose tissue in 18F-FDG PET. J Nucl Med Technol. 2012;40:99–103. doi:10.2967/jnmt.111.098780.

    PubMed  Google Scholar 

  26. Vrieze A, Schopman JE, Admiraal WM, Soeters MR, Nieuwdorp M, Verberne HJ, et al. Fasting and postprandial activity of brown adipose tissue in healthy men. J Nucl Med. 2012;53:1407–10. doi:10.2967/jnumed.111.100701.

    CAS  PubMed  Google Scholar 

  27. Admiraal WM, Holleman F, Bahler L, Soeters MR, Hoekstra JB, Verberne HJ. Combining 123I-metaiodobenzylguanidine SPECT/CT and 18F-FDG PET/CT for the assessment of brown adipose tissue activity in humans during cold exposure. J Nucl Med. 2013;54:208–12. doi:10.2967/jnumed.112.111849.

    CAS  PubMed  Google Scholar 

  28. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Hoeks J, Schrauwen P, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97:E1229–33. doi:10.1210/jc.2012-1289.

    CAS  PubMed  Google Scholar 

  29. Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes. 2010;59:1789–93. doi:10.2337/db10-0004.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring). 2011;19:13–6. doi:10.1038/oby.2010.105.

    Google Scholar 

  31. Perkins AC, Mshelia DS, Symonds ME, Sathekge M. Prevalence and pattern of brown adipose tissue distribution of 18F-FDG in patients undergoing PET-CT in a subtropical climatic zone. Nucl Med Commun. 2013;34:168–74. doi:10.1097/MNM.0b013e32835bbbf0.

    CAS  PubMed  Google Scholar 

  32. Cronin CG, Prakash P, Daniels GH, Boland GW, Kalra MK, Halpern EF, et al. Brown fat at PET/CT: correlation with patient characteristics. Radiology. 2012;263:836–42. doi:10.1148/radiol.12100683.

    PubMed  Google Scholar 

  33. Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, et al. Seasonal variation in the effect of constant ambient temperature of 24 degrees C in reducing FDG uptake by brown adipose tissue in children. Eur J Nucl Med Mol Imaging. 2010;37:1854–60. doi:10.1007/s00259-010-1485-2.

    PubMed  Google Scholar 

  34. Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, et al. Constant ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging. 2009;36:602–6. doi:10.1007/s00259-008-0983-y.

    PubMed  Google Scholar 

  35. Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122:545–52. doi:10.1172/JCI60433.

    PubMed Central  PubMed  Google Scholar 

  36. Vogel WV, Valdés Olmos RA, Tijs TJ, Gillies MF, van Elswijk G, Vogt J. Intervention to lower anxiety of 18F-FDG PET/CT patients by use of audiovisual imagery during the uptake phase before imaging. J Nucl Med Technol. 2012;40:92–8. doi:10.2967/jnmt.111.097964.

    PubMed  Google Scholar 

  37. Nedergaard J, Bengtsson T, Cannon B. Three years with adult human brown adipose tissue. Ann N Y Acad Sci. 2010;1212:E20–36. doi:10.1111/j.1749-6632.2010.05905.x.

    PubMed  Google Scholar 

  38. Gilsanz V, Hu HH, Kajimura S. Relevance of brown adipose tissue in infancy and adolescence. Pediatr Res. 2012;73:3–9. doi:10.1038/pr.2012.141.

    PubMed Central  PubMed  Google Scholar 

  39. Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TA, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr. 2011;160:604–9.e1. doi:10.1016/j.jpeds.2011.09.035.

    PubMed Central  PubMed  Google Scholar 

  40. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123:3404–8. doi: 10.1172/JCI67803.

    Google Scholar 

  41. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123:3395–403. doi: 10.1172/JCI68993.

    Google Scholar 

  42. van der Veen DR, Shao J, Chapman S, Leevy WM, Duffield GE. A diurnal rhythm in glucose uptake in brown adipose tissue revealed by in vivo PET-FDG imaging. Obesity (Silver Spring). 2012;20:1527–9. doi:10.1038/oby.2012.78.

    Google Scholar 

  43. Lee P, Swarbrick MM, Ho KK. Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev. 2013;34:413–38. doi: 10.1210/er.2012-1081.

    Google Scholar 

  44. Jezek P, Garlid KD. Mammalian mitochondrial uncoupling proteins. Int J Biochem Cell Biol. 1998;30:1163–8.

    CAS  PubMed  Google Scholar 

  45. Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, et al. The biology of mitochondrial uncoupling proteins. Diabetes. 2004;53 Suppl 1:S130–5.

    CAS  PubMed  Google Scholar 

  46. Sluse FE. Uncoupling proteins: molecular, functional, regulatory, physiological and pathological aspects. Adv Exp Med Biol. 2012;942:137–56. doi:10.1007/978-94-007-2869-1_6.

    CAS  PubMed  Google Scholar 

  47. Jastroch M, Withers K, Klingenspor M. Uncoupling protein 2 and 3 in marsupials: identification, phylogeny, and gene expression in response to cold and fasting in Antechinus flavipes. Physiol Genomics. 2004;17:130–9. doi:10.1152/physiolgenomics.00165.2003.

    CAS  PubMed  Google Scholar 

  48. Jastroch M, Withers KW, Taudien S, Frappell PB, Helwig M, Fromme T, et al. Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis. Physiol Genomics. 2008;32:161–9. doi:10.1152/physiolgenomics.00183.2007.

    CAS  PubMed  Google Scholar 

  49. Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci U S A. 2012;109:10001–5. doi:10.1073/pnas.1207911109.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med. 2010;51:246–50. doi:10.2967/jnumed.109.068775.

    PubMed  Google Scholar 

  51. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5. doi:10.1038/nm.2297.

    CAS  PubMed  Google Scholar 

  52. Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, et al. Evidence for two types of brown adipose tissue in humans. Nat Med. 2013;19:631–4. doi:10.1038/nm.3017.

    CAS  PubMed  Google Scholar 

  54. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27:234–50. doi:10.1101/gad.211649.112.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homøe P, Loft A, et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013;17:798–805. doi:10.1016/j.cmet.2013.04.011.

    CAS  PubMed  Google Scholar 

  56. van der Lans AA, Hoeks J, Brans B, Vijgen G, Visser M, Vosselman MJ, et al. Cold acclimation recruits BAT and increases non-shivering thermogenesis in humans. J Clin Invest. 2013. Accepted for publication.

  57. Vosselman MJ, van Marken Lichtenbelt WD, Schrauwen P. Energy dissipation in brown adipose tissue: from mice to men. Mol Cell Endocrinol. 2013;379:43–50. doi: 10.1016/j.mce.2013.04.017.

    Google Scholar 

  58. Bartelt A, Heeren J. The holy grail of metabolic disease: brown adipose tissue. Curr Opin Lipidol. 2012;23:190–5. doi:10.1097/MOL.0b013e328352dcef.

    CAS  PubMed  Google Scholar 

  59. Guerra C, Navarro P, Valverde AM, Arribas M, Brüning J, Kozak LP, et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest. 2001;108:1205–13. doi:10.1172/JCI13103.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8. doi:10.1038/nature10777.

    PubMed Central  PubMed  Google Scholar 

  61. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98:E769–78. doi:10.1210/jc.2012-2749.

    CAS  PubMed  Google Scholar 

  62. Sakamoto T, Takahashi N, Sawaragi Y, Naknukool S, Yu R, Goto T, et al. Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am J Physiol Cell Physiol. 2013;304:C729–38. doi:10.1152/ajpcell.00312.2012.

    CAS  PubMed  Google Scholar 

  63. Parinandi NL, Magalang UJ. Avatars of adipose tissue: the saga of transformation of white fat, the villain into brown fat, the protector. Focus on “inflammation induced by RAW macrophages suppresses the UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes”. Am J Physiol Cell Physiol. 2013;304:C715–6.

    CAS  PubMed  Google Scholar 

  64. Pasanisi F, Pace L, Fonti R, Marra M, Sgambati D, De Caprio C, et al. Evidence of brown fat activity in constitutional leanness. J Clin Endocrinol Metab. 2013;98:1214–8. doi:10.1210/jc.2012-2981.

    CAS  PubMed  Google Scholar 

  65. Kosmiski LA, Sage-El A, Kealey EH, Bessesen DH. Brown fat activity is not apparent in subjects with HIV lipodystrophy and increased resting energy expenditure. Obesity (Silver Spring). 2011;19:2096–8. doi:10.1038/oby.2011.231.

    CAS  Google Scholar 

  66. Torriani M, Zanni MV, Fitch K, Stavrou E, Bredella MA, Lim R, et al. Increased FDG uptake in association with reduced extremity fat in HIV patients. Antivir Ther. 2013;18:243–8. doi:10.3851/IMP2420.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kiefer FW, Cohen P, Plutzky J. Fifty shades of brown: perivascular fat, thermogenesis, and atherosclerosis. Circulation. 2012;126:1012–5. doi:10.1161/CIRCULATIONAHA.112.123521.

    PubMed Central  PubMed  Google Scholar 

  68. Fatemi A, Item C, Stöckler-Ipsiroglu S, Ipsiroglu O, Sperl W, Patsch W, et al. Sudden infant death: no evidence for linkage to common polymorphisms in the uncoupling protein-1 and the beta3-adrenergic receptor genes. Eur J Pediatr. 2002;161:337–9. doi:10.1007/s00431-002-0940-x.

    CAS  PubMed  Google Scholar 

  69. Vijgen G, van Marken LW, Lichtenbelt W. Brown adipose tissue: clinical impact of a re-discovered thermogenic organ. Front Biosci (Elite Ed). 2013;5:823–33.

    Google Scholar 

  70. Ichimiya H, Arakawa S, Sato T, Shimada T, Chiba M, Soma Y, et al. Involvement of brown adipose tissue in subcutaneous fat necrosis of the newborn. Dermatology. 2011;223:207–10. doi:10.1159/000331810.

    CAS  PubMed  Google Scholar 

  71. Svacina S. Treatment of obese diabetics. Adv Exp Med Biol. 2012;771:459–64.

    PubMed  Google Scholar 

  72. Schwartz S, Fabricatore AN, Diamond A. Weight reduction in diabetes. Adv Exp Med Biol. 2012;771:438–58.

    PubMed  Google Scholar 

  73. Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013;54:523–31. doi:10.2967/jnumed.112.111336.

    CAS  PubMed  Google Scholar 

  74. Stock MJ. Thermogenesis and brown fat: relevance to human obesity. Infusionstherapie. 1989;16:282–4.

    CAS  PubMed  Google Scholar 

  75. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359. doi:10.1152/physrev.00015.2003.

    CAS  PubMed  Google Scholar 

  76. Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.

    CAS  PubMed  Google Scholar 

  77. Rothwell NJ, Stock MJ. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond). 1983;64:19–23.

    CAS  Google Scholar 

  78. Kim JY, Lee SS. The effects of uncoupling protein 1 and beta3-adrenergic receptor gene polymorphisms on weight loss and lipid profiles in obese women. Int J Vitam Nutr Res. 2010;80:87–96. doi:10.1024/0300-9831/a000009.

    CAS  PubMed  Google Scholar 

  79. Kurokawa N. Association of BMI with the beta3 adrenergic receptor gene mutation: a meta-analysis. Nihon Eiseigaku Zasshi. 2011;66:42–6.

    CAS  PubMed  Google Scholar 

  80. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9:203–9. doi:10.1016/j.cmet.2008.12.014.

    CAS  PubMed  Google Scholar 

  81. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993;366:740–2. doi:10.1038/366740a0.

    Google Scholar 

  82. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002;297:843–5. doi:10.1126/science.1073160.

    CAS  PubMed  Google Scholar 

  83. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res. 2012;53:619–29. doi:10.1194/jlr.M018846.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kopecky J, Clarke G, Enerbäck S, Spiegelman B, Kozak LP. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest. 1995;96:2914–23. doi:10.1172/JCI118363.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ghorbani M, Claus TH, Himms-Hagen J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem Pharmacol. 1997;54:121–31.

    CAS  PubMed  Google Scholar 

  86. Ghorbani M, Himms-Hagen J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord. 1997;21:465–75.

    CAS  PubMed  Google Scholar 

  87. Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes. 2012;61:674–82. doi:10.2337/db11-0510.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2012;123:215–23. doi:10.1172/JCI62308.

    PubMed Central  PubMed  Google Scholar 

  89. Lee P, Zhao JT, Swarbrick MM, Gracie G, Bova R, Greenfield JR, et al. High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab. 2011;96:2450–5. doi:10.1210/jc.2011-0487.

    CAS  PubMed  Google Scholar 

  90. Orava J, Nuutila P, Noponen T, Parkkola R, Viljanen T, Enerbäck S, et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring). 2013. doi:10.1002/oby.20456.

  91. Ma SW, Foster DO. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can J Physiol Pharmacol. 1986;64:609–14.

    CAS  PubMed  Google Scholar 

  92. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011;14:272–9. doi:10.1016/j.cmet.2011.06.012.

    CAS  PubMed  Google Scholar 

  93. Lean ME, Murgatroyd PR, Rothnie I, Reid IW, Harvey R. Metabolic and thyroidal responses to mild cold are abnormal in obese diabetic women. Clin Endocrinol (Oxf). 1988;28:665–73.

    CAS  Google Scholar 

  94. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95. doi:10.1016/S1470-2045(10)70218-7.

    PubMed  Google Scholar 

  95. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47. doi:10.1200/JCO.2012.45.2722.

    PubMed  Google Scholar 

  96. Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol. 1986;111:82–5.

    CAS  PubMed  Google Scholar 

  97. Bancroft LW, Kransdorf MJ, Peterson JJ, O’Connor MI. Benign fatty tumors: classification, clinical course, imaging appearance, and treatment. Skeletal Radiol. 2006;35:719–33. doi:10.1007/s00256-006-0189-y.

    PubMed  Google Scholar 

  98. Craig WD, Fanburg-Smith JC, Henry LR, Guerrero R, Barton JH. Fat-containing lesions of the retroperitoneum: radiologic-pathologic correlation. Radiographics. 2009;29:261–90. doi:10.1148/rg.291085203.

    PubMed  Google Scholar 

  99. Essadel A, Bensaid Alaoui S, Mssrouri R, Mohammadine E, Benamr S, Taghy A, et al. Hibernoma: a rare case of massive weight loss. Ann Chir. 2002;127:215–7.

    CAS  PubMed  Google Scholar 

  100. Datema FR, Ferrier MB, Baatenburg de Jong RJ. Impact of severe malnutrition on short-term mortality and overall survival in head and neck cancer. Oral Oncol. 2011;47:910–4. doi:10.1016/j.oraloncology.2011.06.510.

    PubMed  Google Scholar 

  101. Muliawati Y, Haroen H, Rotty LW. Cancer anorexia - cachexia syndrome. Acta Med Indones. 2012;44:154–62.

    PubMed  Google Scholar 

  102. Baracos VE, Reiman T, Mourtzakis M, Gioulbasanis I, Antoun S. Body composition in patients with non-small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. Am J Clin Nutr. 2010;91:1133S–7S. doi:10.3945/ajcn.2010.28608C.

    CAS  PubMed  Google Scholar 

  103. Coleman MP, Rachet B, Woods LM, Mitry E, Riga M, Cooper N, et al. Trends and socioeconomic inequalities in cancer survival in England and Wales up to 2001. Br J Cancer. 2004;90:1367–73. doi:10.1038/sj.bjc.6601696.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Bachmann J, Ketterer K, Marsch C, Fechtner K, Krakowski-Roosen H, Büchler MW, et al. Pancreatic cancer related cachexia: influence on metabolism and correlation to weight loss and pulmonary function. BMC Cancer. 2009;9:255. doi:10.1186/1471-2407-9-255.

    PubMed Central  PubMed  Google Scholar 

  105. Caan BJ, Kwan ML, Shu XO, Pierce JP, Patterson RE, Nechuta SJ, et al. Weight change and survival after breast cancer in the after breast cancer pooling project. Cancer Epidemiol Biomarkers Prev. 2012;21:1260–71. doi:10.1158/1055-9965.EPI-12-0306.

    PubMed Central  PubMed  Google Scholar 

  106. George J, Cannon T, Lai V, Richey L, Zanation A, Hayes DN, et al. Cancer cachexia syndrome in head and neck cancer patients: part II. Pathophysiology. Head Neck. 2007;29:497–507. doi:10.1002/hed.20630.

    PubMed  Google Scholar 

  107. Petrák O, Haluzíková D, Kaválková P, Štrauch B, Rosa J, Holaj R, et al. Changes in energy metabolism in pheochromocytoma. J Clin Endocrinol Metab. 2013;98:1651–8. doi:10.1210/jc.2012-3625.

    PubMed  Google Scholar 

  108. Nguyen-Martin MA, Hammer GD. Pheochromocytoma: an update on risk groups, diagnosis, and management. Hosp Physician. 2006;42:17–24.

    Google Scholar 

  109. Salpeter SR, Malter DS, Luo EJ, Lin AY, Stuart B. Systematic review of cancer presentations with a median survival of six months or less. J Palliat Med. 2011;15:175–85. doi:10.1089/jpm.2011.0192.

    PubMed  Google Scholar 

  110. Gilsanz V, Hu HH, Smith ML, Goodarzian F, Carcich SL, Warburton NM, et al. The depiction of brown adipose tissue is related to disease status in pediatric patients with lymphoma. AJR Am J Roentgenol. 2012;198:909–13. doi:10.2214/AJR.11.7488.

    PubMed  Google Scholar 

  111. Vijgen GH, Bouvy ND, Smidt M, Kooreman L, Schaart G, van Marken Lichtenbelt W. Hibernoma with metabolic impact? BMJ Case Rep. 2012;2012. doi: 10.1136/bcr-2012-006325.

  112. Eisenhofer G. Screening for pheochromocytomas and paragangliomas. Curr Hypertens Rep. 2012;14:130–7. doi:10.1007/s11906-012-0246-y.

    CAS  PubMed  Google Scholar 

  113. Lean ME, James WP, Jennings G, Trayhurn P. Brown adipose tissue in patients with phaeochromocytoma. Int J Obes. 1986;10:219–27.

    CAS  PubMed  Google Scholar 

  114. Chalfant JS, Smith ML, Hu HH, Dorey FJ, Goodarzian F, Fu CH, et al. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. Am J Clin Nutr. 2012;95:1144–9. doi:10.3945/ajcn.111.030650.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Beijer E, Schoenmakers J, Vijgen G, Kessels F, Dingemans A, Schrauwen P, et al. A role of active brown adipose tissue in cancer cachexia? Oncol Rev. 2012;6:88–94.

    Google Scholar 

  116. Kortelainen ML. Association between cardiac pathology and fat tissue distribution in an autopsy series of men without premortem evidence of cardiovascular disease. Int J Obes Relat Metab Disord. 1996;20:245–52.

    CAS  PubMed  Google Scholar 

  117. Chang L, Milton H, Eitzman DT, Chen YE. Paradoxical roles of perivascular adipose tissue in atherosclerosis and hypertension. Circ J. 2012;77:11–8.

    PubMed  Google Scholar 

  118. Tewson TJ, Welch MJ, Raichle ME. [18F]-labeled 3-deoxy-3-fluoro-D-glucose: synthesis and preliminary biodistribution data. J Nucl Med. 1978;19:1339–45.

    CAS  PubMed  Google Scholar 

  119. Krause BJ, Schwarzenböck S, Souvatzoglou M. FDG PET and PET/CT. Recent Results Cancer Res. 2013;187:351–69. doi:10.1007/978-3-642-10853-2_12.

    PubMed  Google Scholar 

  120. Antar MA. Radiopharmaceuticals for studying cardiac metabolism. Int J Rad Appl Instrum B. 1990;17:103–28.

    CAS  PubMed  Google Scholar 

  121. Kaiser KP, Geuting B, Grossmann K, Vester E, Lösse B, Antar MA, et al. Tracer kinetics of 15-(ortho-123/131I-phenyl)-pentadecanoic acid (oPPA) and 15-(para-123/131I-phenyl)-pentadecanoic acid (pPPA) in animals and man. J Nucl Med. 1990;31:1608–16.

    CAS  PubMed  Google Scholar 

  122. Tamaki N, Yoshinaga K. Novel iodinated tracers, MIBG and BMIPP, for nuclear cardiology. J Nucl Cardiol. 2011;18:135–43. doi:10.1007/s12350-010-9305-4.

    PubMed Central  PubMed  Google Scholar 

  123. DeGrado TR, Coenen HH, Stocklin G. 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med. 1991;32:1888–96.

    CAS  PubMed  Google Scholar 

  124. Ci X, Frisch F, Lavoie F, Germain P, Lecomte R, van Lier JE, et al. The effect of insulin on the intracellular distribution of 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid in rats. Mol Imaging Biol. 2006;8:237–44. doi:10.1007/s11307-006-0042-7.

    PubMed  Google Scholar 

  125. Henkin AH, Cohen AS, Dubikovskaya EA, Park HM, Nikitin GF, Auzias MG, et al. Real-time noninvasive imaging of fatty acid uptake in vivo. ACS Chem Biol. 2012;7:1884–91. doi:10.1021/cb300194b.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Lubura M, Hesse D, Neumann N, Scherneck S, Wiedmer P, Schürmann A. Non-invasive quantification of white and brown adipose tissues and liver fat content by computed tomography in mice. PLoS One. 2012;7:e37026. doi:10.1371/journal.pone.0037026.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Emonds KM, Swinnen JV, Mortelmans L, Mottaghy FM. Molecular imaging of prostate cancer. Methods. 2009;48:193–9. doi:10.1016/j.ymeth.2009.03.021.

    CAS  PubMed  Google Scholar 

  128. Sun KT, Yeatman LA, Buxton DB, Chen K, Johnson JA, Huang SC, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med. 1998;39:272–80.

    CAS  PubMed  Google Scholar 

  129. Czernin J, Porenta G, Brunken R, Krivokapich J, Chen K, Bennett R, et al. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation. 1993;88:884–95.

    CAS  PubMed  Google Scholar 

  130. Czernin J, Benz MR, Allen-Auerbach MS. PET imaging of prostate cancer using C-acetate. PET Clin. 2009;4:163–72. doi:10.1016/j.cpet.2009.05.001.

    PubMed Central  PubMed  Google Scholar 

  131. Muzik O, Mangner TJ, Granneman JG. Assessment of oxidative metabolism in brown fat using PET imaging. Front Endocrinol (Lausanne). 2012;3:15. doi:10.3389/fendo.2012.00015.

    CAS  Google Scholar 

  132. Goetze S, Lavely WC, Ziessman HA, Wahl RL. Visualization of brown adipose tissue with 99mTc-methoxyisobutylisonitrile on SPECT/CT. J Nucl Med. 2008;49:752–6. doi:10.2967/jnumed.107.048074.

    PubMed  Google Scholar 

  133. Wong KK, Brown RK, Avram AM. Potential false positive Tc-99m sestamibi parathyroid study due to uptake in brown adipose tissue. Clin Nucl Med. 2008;33:346–8. doi:10.1097/RLU.0b013e31816a795a.

    PubMed  Google Scholar 

  134. Fukuchi K, Ono Y, Nakahata Y, Okada Y, Hayashida K, Ishida Y. Visualization of interscapular brown adipose tissue using (99m)Tc-tetrofosmin in pediatric patients. J Nucl Med. 2003;44:1582–5.

    PubMed  Google Scholar 

  135. Baba S, Engles JM, Huso DL, Ishimori T, Wahl RL. Comparison of uptake of multiple clinical radiotracers into brown adipose tissue under cold-stimulated and nonstimulated conditions. J Nucl Med. 2007;48:1715–23. doi:10.2967/jnumed.107.041715.

    PubMed  Google Scholar 

  136. Kyparos D, Arsos G, Georga S, Petridou A, Kyparos A, Papageorgiou E, et al. Assessment of brown adipose tissue activity in rats by 99mTc-sestamibi uptake. Physiol Res. 2006;55:653–9.

    CAS  PubMed  Google Scholar 

  137. Madar I, Isoda T, Finley P, Angle J, Wahl R. 18F-fluorobenzyl triphenyl phosphonium: a noninvasive sensor of brown adipose tissue thermogenesis. J Nucl Med. 2011;52:808–14. doi:10.2967/jnumed.110.084657.

    CAS  PubMed  Google Scholar 

  138. Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med. 2007;48:1021–30. doi:10.2967/jnumed.106.038778.

    CAS  PubMed  Google Scholar 

  139. Madar I, Ravert H, Nelkin B, Abro M, Pomper M, Dannals R, et al. Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur J Nucl Med Mol Imaging. 2007;34:2057–65. doi:10.1007/s00259-007-0500-8.

    CAS  PubMed  Google Scholar 

  140. Hadi M, Chen CC, Whatley M, Pacak K, Carrasquillo JA. Brown fat imaging with (18)F-6-fluorodopamine PET/CT, (18)F-FDG PET/CT, and (123)I-MIBG SPECT: a study of patients being evaluated for pheochromocytoma. J Nucl Med. 2007;48:1077–83. doi:10.2967/jnumed.106.035915.

    CAS  PubMed  Google Scholar 

  141. Okuyama C, Sakane N, Yoshida T, Shima K, Kurosawa H, Kumamoto K, et al. (123)I- or (125)I-metaiodobenzylguanidine visualization of brown adipose tissue. J Nucl Med. 2002;43:1234–40.

    CAS  PubMed  Google Scholar 

  142. Okuyama C, Ushijima Y, Kubota T, Yoshida T, Nakai T, Kobayashi K, et al. 123I-Metaiodobenzylguanidine uptake in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med. 2003;44:1421–5.

    CAS  PubMed  Google Scholar 

  143. Vosselman MJ, van der Lans AA, Brans B, Wierts R, van Baak MA, Schrauwen P, et al. Systemic beta-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes. 2012;61:3106–13. doi:10.2337/db12-0288.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Osculati F, Leclercq F, Sbarbati A, Zancanaro C, Cinti S, Antonakis K. Morphological identification of brown adipose tissue by magnetic resonance imaging in the rat. Eur J Radiol. 1989;9:112–4.

    CAS  PubMed  Google Scholar 

  145. Osculati F, Sbarbati A, Leclercq F, Zancanaro C, Accordini C, Antonakis K, et al. The correlation between magnetic resonance imaging and ultrastructural patterns of brown adipose tissue. J Submicrosc Cytol Pathol. 1991;23:167–74.

    CAS  PubMed  Google Scholar 

  146. Sbarbati A, Baldassarri AM, Zancanaro C, Boicelli A, Osculati F. In vivo morphometry and functional morphology of brown adipose tissue by magnetic resonance imaging. Anat Rec. 1991;231:293–7. doi:10.1002/ar.1092310302.

    CAS  PubMed  Google Scholar 

  147. Lunati E, Marzola P, Nicolato E, Fedrigo M, Villa M, Sbarbati A. In vivo quantitative lipidic map of brown adipose tissue by chemical shift imaging at 4.7 Tesla. J Lipid Res. 1999;40:1395–400.

    CAS  PubMed  Google Scholar 

  148. Sbarbati A, Guerrini U, Marzola P, Asperio R, Osculati F. Chemical shift imaging at 4.7 tesla of brown adipose tissue. J Lipid Res. 1997;38:343–7.

    CAS  PubMed  Google Scholar 

  149. Hu HH, Smith Jr DL, Nayak KS, Goran MI, Nagy TR. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. J Magn Reson Imaging. 2010;31:1195–202. doi:10.1002/jmri.22162.

    PubMed Central  PubMed  Google Scholar 

  150. Cavallini I, Marino MA, Tonello C, Marzola P, Nicolato E, Fabene PF, et al. The hydrolipidic ratio in age-related maturation of adipose tissues. Biomed Pharmacother. 2006;60:139–43. doi:10.1016/j.biopha.2006.01.007.

    CAS  PubMed  Google Scholar 

  151. Peng XG, Ju S, Fang F, Wang Y, Fang K, Cui X, et al. Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy. Am J Physiol Endocrinol Metab. 2013;304:E160–7. doi:10.1152/ajpendo.00401.2012.

    CAS  PubMed  Google Scholar 

  152. van Rooijen BD, van der Lans AA, Brans B, Wildberger JE, Mottaghy FM, Schrauwen P, et al. Imaging cold-activated brown adipose tissue using dynamic T2*-weighted magnetic resonance imaging and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography. Invest Radiol. 2013;48:708–14. doi:10.1097/RLI.0b013e31829363b8.

    Google Scholar 

  153. Foster DO, Frydman ML. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol. 1979;57:257–70.

    CAS  PubMed  Google Scholar 

  154. Chen YI, Cypess AM, Sass CA, Brownell AL, Jokivarsi KT, Kahn CR, et al. Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging. Obesity (Silver Spring). 2012;20:1519–26. doi:10.1038/oby.2012.22.

    CAS  Google Scholar 

  155. Khanna A, Branca RT. Detecting brown adipose tissue activity with BOLD MRI in mice. Magn Reson Med. 2012;68:1285–90. doi:10.1002/mrm.24118.

    PubMed Central  PubMed  Google Scholar 

  156. Kemp GJ, Brindle KM. What do magnetic resonance-based measurements of Pi → ATP flux tell us about skeletal muscle metabolism? Diabetes. 2012;61:1927–34. doi:10.2337/db11-1725.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Hu HH, Gilsanz V. Developments in the imaging of brown adipose tissue and its associations with muscle, puberty, and health in children. Front Endocrinol (Lausanne). 2011;2:33. doi:10.3389/fendo.2011.00033.

    Google Scholar 

  158. Huang YC, Hsu CC, Huang P, Yin TK, Chiu NT, Wang PW, et al. The changes in brain metabolism in people with activated brown adipose tissue: a PET study. Neuroimage. 2011;54:142–7. doi:10.1016/j.neuroimage.2010.07.058.

    CAS  PubMed  Google Scholar 

  159. Ruth M, Wellman T, Mercier G, Szabo T, Apovian C. An automated algorithm to identify and quantify brown adipose tissue in human (18)F-FDG-PET/CT scans. Obesity (Silver Spring). 2013;21:1554–60. doi:10.1002/oby.20315.

  160. Gilsanz V, Chung SA, Jackson H, Dorey FJ, Hu HH. Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr. 2010;158:722–6. doi:10.1016/j.jpeds.2010.11.020.

    PubMed Central  PubMed  Google Scholar 

  161. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90. doi:10.1038/jcbfm.1985.87.

    CAS  PubMed  Google Scholar 

  162. Sundaram SK, Freedman NM, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al. Simplified kinetic analysis of tumor 18F-FDG uptake: a dynamic approach. J Nucl Med. 2004;45:1328–33.

    CAS  PubMed  Google Scholar 

  163. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241:462–4.

    CAS  PubMed  Google Scholar 

  164. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27:476–83. doi:10.1172/JCI101994.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. 1984;25:177–87.

    CAS  PubMed  Google Scholar 

  166. Hattori N, Bergsneider M, Wu HM, Glenn TC, Vespa PM, Hovda DA, et al. Accuracy of a method using short inhalation of (15)O-O(2) for measuring cerebral oxygen extraction fraction with PET in healthy humans. J Nucl Med. 2004;45:765–70.

    PubMed  Google Scholar 

  167. Grubb Jr RL, Raichle ME, Higgins CS, Eichling JO. Measurement of regional cerebral blood volume by emission tomography. Ann Neurol. 1978;4:322–8. doi:10.1002/ana.410040407.

    PubMed  Google Scholar 

  168. Raichle ME, Welch MJ, Grubb Jr RL, Higgins CS, Ter-Pogossian MM, Larson KB. Measurement of regional substrate utilization rates by emission tomography. Science. 1978;199:986–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to convey their thanks to Ivo Pooters, Marielle Visser and Emiel Beijer for their technical support. We are also grateful to Anouk van der Lans, Maarten Vosselman and Guy Vijgen for providing exemplary PET/CT images.

Conflicts of interest

This work was financially supported by a grant from the Weijerhorst foundation to the Department of Nuclear Medicine in Maastricht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boudewijn Brans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauwens, M., Wierts, R., van Royen, B. et al. Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging 41, 776–791 (2014). https://doi.org/10.1007/s00259-013-2611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2611-8

Keywords