Abstract
Rebamipide (Reba), a gastroprotective drug, has signified its hepatoprotective activity; however, its possible post-therapeutic intervention in hepatic ischemia/reperfusion (I/R) remains elusive. Consequently, the intent of this study was to test Reba modulatory effect on nuclear factor (NF)-κB signaling in hepatic I/R model. Rats were randomized into sham, I/R, Reba 60, and Reba100 (60 and 100 mg/kg, respectively) groups. Ischemia was induced for 30 min followed by 3-day reperfusion to set up a model of partial (70%) warm hepatic ischemia. Post-treatment with Reba reduced the serum level of alanine transaminase, improved histopathological alterations of the liver, and elevated hepatic adenosine triphosphate. It also lowered hepatic lipid peroxides and increased both total antioxidant capacity and nitric oxide. Besides, Reba decreased tumor necrosis factor-α, interferon-γ, intercellular adhesion molecule-1, myeloperoxidase, prostaglandin E2, cyclooxygenase-2 expression/content, and caspase-3 activity. Reba also upregulated the gene expression/content of sirtuin 1 (SIRT-1), while it downregulated that of high mobility group box (HMGB)1 and reduced the expression/content of NF-κB p65/pS536-NF-κB and the content of pT180/Y182-p38MAPK. Reba provided tenable hepato-therapeutic mechanisms to mitigate events concomitant with hepatic I/R via inhibition of NF-κB p65 and modulation of its influential signals (SIRT-1, HMGB1, p38MAPK) associated with its antiinflammatory, antioxidant, and antiapoptotic impacts.
Similar content being viewed by others
Abbreviations
- ALT:
-
Alanine transaminase
- ANOVA:
-
Analysis of variance
- ATP:
-
Adenosine triphosphate
- COX-2:
-
Cyclooxygenase-2
- GAPDH:
-
Glyceraldehyde-3 phosphate dehydrogenase
- H&E:
-
Hematoxylin and eosin
- HMGB1:
-
High mobility group box 1
- I/R:
-
Ischemia/reperfusion
- ICAM-1:
-
Intercellular adhesion molecule-1
- IFN-γ:
-
Interferon-gamma
- MDA:
-
Malondialdehyde
- MPO:
-
Myeloperoxidase
- NAD+ :
-
Nicotinamide adenine dinucleotide
- NF-κB p65:
-
Nuclear factor-kappa B p65
- NIH:
-
National Institutes of Health
- NOx:
-
Total nitric oxide
- p38 MAPK:
-
p38 mitogen-activated protein kinase
- PGE2 :
-
Prostaglandin E2
- qPCR:
-
Quantitative real-time polymerase chain reaction
- Reba:
-
Rebamipide
- ROS:
-
Reactive oxygen species
- SEM:
-
Standard error of mean
- SIRT-1:
-
Sirtuin 1
- TAC:
-
Total antioxidant capacity
- TNF-α:
-
Tumor necrosis factor-alpha
References
Abe Y, Hines IN, Zibari G, Pavlick K, Gray L, Kitagawa Y, Grisham MB (2009) Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med 46:1–7. doi:10.1016/j.freeradbiomed.2008.09.029
Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A (2010) Liver ischemia/reperfusion injury: processes in inflammatory networks—a review. Liver Transpl 16:1016–1032. doi:10.1002/lt.22117
Aihara M, Imagawa K, Funakoshi Y, Ohmoto Y, Kikuchi M (1998) Effects of rebamipide on production of several cytokines by human peripheral blood mononuclear cells. Dig Dis Sci 43:160S–166S
Arakawa T, Kobayashi K, Yoshikawa T, Tarnawski A (1998) Rebamipide: overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig Dis Sci 43:5S–13S
Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325. doi:10.1152/ajpcell.00616.2005
Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.0292
Biel TG et al (2016) Sirtuin 1 suppresses mitochondrial dysfunction of ischemic mouse livers in a mitofusin 2-dependent manner. Cell Death Differ 23:279–290. doi:10.1038/cdd.2015.96
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209
Brenmoehl J, Hoeflich A (2013) Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13:755–761. doi:10.1016/j.mito.2013.04.002
Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83. doi:10.1128/MMBR.00031-10
Diao L, Mei Q, Xu JM, Liu XC, Hu J, Jin J, Yao Q, Chen ML (2012) Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice. World J Gastroenterol 18:1059–1066. doi:10.3748/wjg.v18.i10.1059
Farhood A, McGuire GM, Manning AM, Miyasaka M, Smith CW, Jaeschke H (1995) Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. J Leukoc Biol 57:368–374
Gendy A, El-Abhar H, Mohsen A (2014) Cilostazol hepatoprotective effect against ischemia/reperfusion: involvement of gsk-3β, cyclin D1 and Wnt/β-catenin pathway. J Pharmacol Res 4:75–81
Hahm KB, Kim DH, Lee KM, Lee JS, Surh YJ, Kim YB, Yoo BM, Kim JH, Joo HJ, Cho YK, Nam KT, Cho SW (2003) Effect of long-term administration of rebamipide on Helicobacter pylori infection in mice. Aliment Pharmacol Ther 18(Suppl 1):24–38
Hamada T, Tsuchihashi S, Avanesyan A, Duarte S, Moore C, Busuttil RW, Coito AJ (2008) Cyclooxygenase-2 deficiency enhances Th2 immune responses and impairs neutrophil recruitment in hepatic ischemia/reperfusion injury. J Immunol 180:1843–1853
Hiratsuka T, Futagami S, Shindo T, Hamamoto T, Ueki N, Suzuki K, Shinji Y, Kusunoki M, Shinoki K, Wada K, Miyake K, Gudis K, Tsukui T, Sakamoto C (2005a) Rebamipide reduces indomethacin-induced gastric injury in mice via down-regulation of ICAM-1 expression. Dig Dis Sci 50(Suppl 1):S84–S89. doi:10.1007/s10620-005-2811-6
Hiratsuka T, Futagami S, Tatsuguchi A, Suzuki K, Shinji Y, Kusunoki M, Shinoki K, Nishigaki H, Fujimori S, Wada K, Miyake K, Gudis K, Tsukui T, Sakamoto C (2005b) COX-1 and COX-2 conversely promote and suppress ischemia-reperfusion gastric injury in mice. Scand J Gastroenterol 40:903–913
Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253–262. doi:10.1016/j.bbapap.2005.08.017
Kim CD, Hong KW (1995) Preventive effect of rebamipide on gastric lesions induced by ischemia-reperfusion in the rat. J Pharmacol Exp Ther 275:340–344
Kim JS, Kim JM, Jung HC, Song IS (2003) The effect of rebamipide on the expression of proinflammatory mediators and apoptosis in human neutrophils by Helicobacter pylori water-soluble surface proteins. Aliment Pharmacol Ther 18(Suppl 1):45–54
Kim CD, Kim YK, Lee SH, Hong KW (2000) Rebamipide inhibits neutrophil adhesion to hypoxia/reoxygenation-stimulated endothelial cells via nuclear factor-kappaB-dependent pathway. J Pharmacol Exp Ther 294:864–869
King LA, Toledo AH, Rivera-Chavez FA, Toledo-Pereyra LH (2009) Role of p38 and JNK in liver ischemia and reperfusion. J Hepato-Biliary-Pancreat Surg 16:763–770. doi:10.1007/s00534-009-0155-x
Kojima M, Iwakiri R, Wu B, Fujise T, Watanabe K, Lin T, Amemori S, Sakata H, Shimoda R, Oguzu T, Ootani A, Tsunada S, Fujimoto K (2003) Effects of antioxidative agents on apoptosis induced by ischaemia-reperfusion in rat intestinal mucosa. Aliment Pharmacol Ther 18(Suppl 1):139–145
Kumagai T, Nakamura Y, Osawa T, Uchida K (2002) Role of p38 mitogen-activated protein kinase in the 4-hydroxy-2-nonenal-induced cyclooxygenase-2 expression. Arch Biochem Biophys 397:240–245. doi:10.1006/abbi.2001.2601
Lee SM, Kim KH (1995) Rebamipide ameliorates hepatic dysfunction induced by ischemia/reperfusion in rats. Eur J Pharmacol 294:41–46
Li P, Zhao Y, Wu X, Xia M, Fang M, Iwasaki Y, Sha J, Chen Q, Xu Y, Shen A (2012) Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res 40:1609–1620. doi:10.1093/nar/gkr984
Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38:864–878. doi:10.1016/j.molcel.2010.05.023
Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX (2010) HMGB1 activates nuclear factor-kappaB signaling by RAGE and increases the production of TNF-alpha in human umbilical vein endothelial cells. Immunobiology 215:956–962. doi:10.1016/j.imbio.2009.11.001
Lv H, Wang L, Shen J, Hao S, Ming A, Wang X, Zhang Z (2015) Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull 115:30–36. doi:10.1016/j.brainresbull.2015.05.002
Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43:S31–S44. doi:10.1002/hep.21062
Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104:14855–14860. doi:10.1073/pnas.0704329104
Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278
Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. doi:10.1006/niox.2000.0319
Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA (2008) Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res 147:153–159
Nguyen HX, O’Barr TJ, Anderson AJ (2007) Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-α. J Neurochem 102:900–912. doi:10.1111/j.1471-4159.2007.04643.x
Pan W, Yu H, Huang S, Zhu P (2016) Resveratrol protects against TNF-α-induced injury in human umbilical endothelial cells through promoting sirtuin-1-induced repression of NF-KB and p38 MAPK. PLoS One 11:e0147034. doi:10.1371/ journal.pone.0147034
Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Ben Abdennebi H, Rosello-Catafau J (2013) Role of sirtuins in ischemia-reperfusion injury. World J Gastroenterol 19:7594–7602. doi:10.3748/wjg.v19.i43.7594
Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH (2009) Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Investig Surg 22:46–55. doi:10.1080/08941930802709470
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338. doi:10.1016/j.cmet.2009.02.006
Qin YH, Dai SM, Tang GS, Zhang J, Ren D, Wang ZW, Shen Q (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol 183:6244–6250
Rendon-Mitchell B, Ochani M, Li J, Han J, Wang H, Yang H, Susarla S, Czura C, Mitchell RA, Chen G, Sama AE, Tracey KJ, Wang H (2003) IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol 170:3890–3897
Rickenbacher A, Jang JH, Limani P, Ungethum U, Lehmann K, Oberkofler CE, Weber A, Graf R, Humar B, Clavien PA (2014) Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J Hepatol 61:301–308. doi:10.1016/j.jhep.2014.04.010
Schmitz ML, Weber A, Roxlau T, Gaestel M, Kracht M (2011) Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochim Biophys Acta 1813:2165–2175. doi:10.1016/j.bbamcr.2011.06.019
Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720
Stoffels B, Yonezawa K, Yamamoto Y, Schafer N, Overhaus M, Klinge U, Kalff JC, Minor T, Tolba RH (2011) Meloxicam, a COX-2 inhibitor, ameliorates ischemia/reperfusion injury in non-heart-beating donor livers. Eur Surg Res 47:109–117. doi:10.1159/000329414
Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11. doi:10.1172/JCI11830
Tokuhara K, Hamada Y, Tanaka H, Yamada M, Ozaki T, Matsui K, Kamiyama Y, Nishizawa M, Ito S, Okumura T (2008) Rebamipide, anti-gastric ulcer drug, up-regulates the induction of iNOS in proinflammatory cytokine-stimulated hepatocytes. Nitric Oxide 18:28–36. doi:10.1016/j.niox.2007.08.004
Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, Billiar TR (2007) HMGB1 release induced by liver ischemia involves toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204:2913–2923. doi:10.1084/jem.20070247
Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, Billiar TR (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135–1143. doi:10.1084/jem.20042614
Wang FP, Li L, Li J, Wang JY, Wang LY, Jiang W (2013) High mobility group box-1 promotes the proliferation and migration of hepatic stellate cells via TLR4-dependent signal pathways of PI3K/Akt and JNK. PLoS One 8:e64373
Yamasaki K, Kanbe T, Chijiwa T, Ishiyama H, Morita S (1987) Gastric mucosal protection by OPC-12759, a novel antiulcer compound, in the rat. Eur J Pharmacol 142:23–29
Yoshikawa T, Naito Y, Tanigawa T, Kondo M (1993) Free radical scavenging activity of the novel anti-ulcer agent rebamipide studied by electron spin resonance. Arzneimittelforschung 43:363–366
Acknowledgements
The authors would like to thank Prof. Dr. A. Bakear (Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt) for his assistance in the histopathological examination.
Author information
Authors and Affiliations
Contributions
A.M.G., D.M.A., and H.S.E. conceived and designed the experiments, wrote the manuscript, and approved the final submission. A.M.G. performed the experiments and analyzed the data. H.S.E. and D.M.A. lead the research.
Corresponding author
Ethics declarations
The study was approved by the Research Ethics Committee (Faculty of Pharmacy, Cairo University, Cairo, Egypt; PT 1302) and complies with the published Guide for Care and Use of Laboratory Animals No. 8023 (NIH Publications, USA, 1978).
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Gendy, A.M., Abdallah, D.M. & El-Abhar, H.S. The potential curative effect of rebamipide in hepatic ischemia/reperfusion injury. Naunyn-Schmiedeberg's Arch Pharmacol 390, 691–700 (2017). https://doi.org/10.1007/s00210-017-1370-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00210-017-1370-7