Abstract
Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Adhikari P, Pandey A (2020) Bioprospecting plant growth promoting endophytic bacteria isolated from himalayan yew (Taxus Wallichiana Zucc). Microbiol Res 239:126536. https://doi.org/10.1016/j.micres.2020.126536
Adhikari P, Jain R, Sharma A, Pandey A (2021) Plant growth promotion at low temperature by phosphate solubilizing Pseudomonas spp. isolated from high-altitude himalayan soil. Microb Ecol 82(3):677–687. https://doi.org/10.1007/s00248-021-01702-1
Al-Ghanayem AA, Joseph B, Alhussaini MS, Ramteke PW (2022) Current applications and future trends of extremozymes in detergent industries. Microb Extremozymes 223–230. https://doi.org/10.1016/b978-0-12-822945-3.00020-8
Ali B, Sajjad W, Ilahi N, Bahadur A, Kang S (2022) Soot biodegradation by psychrotolerant bacterial consortia. Biodegradation 33(4):407–418. https://doi.org/10.1007/s10532-022-09990-1
Alvares JJ, Furtado IJ (2021) Kinetics of DPPH• scavenging by bacterioruberin from Haloferax alexandrinus GUSF-1 (KF796625). J Anal Sci Technol 12:44. https://doi.org/10.1186/s40543-021-00293-3
Bairwan RD, Yahya EB, Gopakumar D, HPS AK (2024) Recent advances in poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) biocomposites in sustainable packaging applications. Adv Mater Lett 24011739. https://doi.org/10.5185/amlett.2024.011739
Bao CX, Li SY, Xin YJ, Hou J, Cui HL (2022) Natrinema halophilum sp. nov., Natrinema salinisoli sp. nov., Natrinema amylolyticum sp. nov. and Haloterrigena alkaliphila sp. nov., four extremely halophilic archaea isolated from salt mine, saline soil and salt lake. Int J Syst Evol Microbiol 72(5). https://doi.org/10.1099/ijsem.0.005385
Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague (in Dutch)
Bhatia RK, Ullah S, Hoque MZ, Ahmad I, Yang Y-H, Bhatt AK, Bhatia SK (2021) Psychrophiles: a source of cold-adapted enzymes for energy efficient biotechnological industrial processes. J Environ Chem Eng 9(1):104607. https://doi.org/10.1016/j.jece.2020.104607
Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5(1). https://doi.org/10.1186/1746-1448-5-9
Buda DM, Szekeres E, Tudoran LB, Esclapez J, Banciu HL (2023) Genome-wide transcriptional response to silver stress in extremely halophilic archaeon Haloferax alexandrinus DSM 27206 T. BMC Microbiol 23(1). https://doi.org/10.1186/s12866-023-03133-z
Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460. https://doi.org/10.1111/j.1751-7915.2011.00258.x
Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S (2020) Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 12(11):1637–1655. https://doi.org/10.1039/d0mt00140f
Chattopadhyay M, Reddy G, Shivaji S (2014) Psychrophilic Bacteria: Biodiversity, molecular basis of cold adaptation and biotechnological implications.CurrBiotechnol. 3(1):100–116. https://doi.org/10.2174/22115501113026660039
Chauhan M, Kimothi A, Sharma A, Pandey A (2023a) Cold adapted Pseudomonas: ecology to biotechnology. https://doi.org/10.3389/fmicb.2023.1218708. Front Microbiol14:1218708
Chauhan M, Rani A, Joshi S, Sharma PK (2023b) Role of psychrophilic and psychrotolerant microorganisms toward the development of hill agriculture. Adv Microb Technol Sustainable Agric Environ 15–29. https://doi.org/10.1016/b978-0-323-95090-9.00002-9
Chen Z, Chen L, Zhang W (2017) Tools for genomic and transcriptomic analysis of microbes at single-cell level. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01831
Chen S, Xu Y, Sun S, Chen F (2019) Haloterrigen asalifodinae sp. nov., an extremely halophilic archaeon isolated from a subterranean rock salt. Antonie Van Leeuwenhoek 112(9):1317–1329. https://doi.org/10.1007/s10482-019-01264-w
Choi D, Kwon D, Lee D, Jung S, Chen WH, Lim JK, Park SJ, Park WK, Kwon EE (2023) Strategic use of extremophilic microalgae as a carbon source in the thermo-chemical process. ACS Sustain Chem Eng 11(16):6454–6464. https://doi.org/10.1021/acssuschemeng.3c00486
Cirone M A, Figoli, Galiano F, La Russa MF, Macchia A, Mancuso R, Ricca M, Rovella N, Taverniti M, Ruffolo S A (2023) Innovative methodologies for the conservation of Cultural Heritage against Biodeterioration: a review. Coatings 13(12):1986. https://doi.org/10.3390/coatings13121986
D’Amico S, Collins T, Marx J, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389. https://doi.org/10.1038/sj.embor.7400662
Daoud L, Ben Ali M (2020) Halophilic microorganisms: interesting group of extremophiles with important applications in biotechnology and environment. Physiological Biotechnol Aspects Extremophiles 51–64. https://doi.org/10.1016/b978-0-12-818322-9.00005-8
Das T, Ray P, Nandy S, Al-Tawaha AR, Pandey DK, Kumar V, Dey A (2022) Piezophilic Fungi: sources of novel natural products with preclinical and clinical significance. Extremophilic Fungi 523–545. https://doi.org/10.1007/978-981-16-4907-3_22
Dasila K, Pandey A, Samant SS, Pande V (2020) Endophytes associated with himalayan silver birch (Betula Utilis D. Don) roots in relation to season and soil parameters. Appl Soil Ecol 149:103513. https://doi.org/10.1016/j.apsoil.2020.103513
DasSarma S, Arora P (2002) Halophiles. Encyclopedia of Life Sciences. Portico. https://doi.org/10.1038/npg.els.0000394
De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517. https://doi.org/10.1002/embr.201338170
De Wit R, Bouvier T (2006) Everything is everywhere, but, the environment selects; what did Baas Becking and Beijerinck really say? Environ Microbiol 8(4):755–758
Dhakar K, Pandey A (2016) Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 100(6):2499–2510. https://doi.org/10.1007/s00253-016-7285-2
Dhakar K, Pandey A (2020) Microbial Ecology from the Himalayan Cryosphere Perspective. Microorganisms 8:257. https://doi.org/10.3390/microorganisms8020257
Dhakar K, Sharma A, Pandey A (2014) Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India. World J Microbiol Biotechnol 30(4):1315–1324. https://doi.org/10.1007/s11274-013-1545-4
Gabani P, Singh OV (2012) Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97(3):993–1004. https://doi.org/10.1007/s00253-012-4642-7
Gao S, Zhang Z, Xu X, Zhou H, Zhu H, Zhang Y, Cao X, Zhou W, Shen H (2022) Characteristics of a capnophilic small colony variant of Escherichia coli co-isolated with two other strains from a patient with bacteremia in China. Arch Microbiol 204(6). https://doi.org/10.1007/s00203-022-02932-8
Ghosh S, Banerjee S, Sengupta A, Peddireddy V, Mamillapalli A, Banerjee A, Sharma BK, Kumar A (2023) Survival and adaptation strategies of microorganisms in the extreme radiation. In Bacterial Survival in the Hostile Environment, 219–229. Academic Press. https://doi.org/10.1016/b978-0-323-91806-0.00011-4
Gulder TAM, Moore BS (2010) Salinosporamide Natural products: potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed 49(49):9346–9367. https://doi.org/10.1002/anie.201000728
Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240
Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22(10):1275–1281. https://doi.org/10.1038/nbt1010
Hoover R, Pikuta E (2009) Psychrophilic and psychrotolerant microbial extremophiles in polar environments. Pol Microbiol 115–156. https://doi.org/10.1201/9781420083880-c5
Ibáñez A, Garrido-Chamorro S, Vasco-Cárdenas M, Barreiro C (2023) From lab to field: Biofertilizers in the 21st century. Horticulturae 9(12):1306. https://doi.org/10.3390/horticulturae9121306
Jardine JL, Stoychev S, Mavumengwana V, Ubomba-Jaswa E (2018) Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography - Tandem mass spectrometry (Lc-Ms/Ms). J Environ Manag 223:787–796. https://doi.org/10.1016/j.jenvman.2018.06.089
Jin Q, Kirk MF (2018) pH as a primary control in environmental microbiology: 2. Kinetic perspective. Front Environ Sci 6. https://doi.org/10.3389/fenvs.2018.00101
Jin M, Xiao A, Zhu L, Zhang Z, Huang H, Jiang L (2019) The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 9(1). https://doi.org/10.1186/s13568-019-0862-x
Johnson DB, Quatrini R (2020) Acidophile microbiology in space and time. Curr Iss Mol Biol 63–76. https://doi.org/10.21775/cimb.039.063
Kaira GS, Dhakar K, Pandey A (2015) A psychrotolerant strain of Serratia marcescens (MTCC 4822) produces laccase at wide temperature and pH range. AMB Express 5(1):8. DOI https://doi.org/10.1186/s13568-014-0092-1
Kajale S, Deshpande N, Pali S, Shouche Y, Sharma A (2020) Natrialba swarupiae sp. nov., a halophilic archaeon isolated from a hypersaline lake in India. Int J Syst Evol Microbiol 70(3):1876–1881. https://doi.org/10.1099/ijsem.0.003986
Kamika I, Momba MN (2013) Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol 13(1):28. https://doi.org/10.1186/1471-2180-13-28
Kanekar PP, Kanekar SP (2022) Metallophilic, metal-resistant, and metal-tolerant microorganisms. Microorganisms Sustain 187–213. https://doi.org/10.1007/978-981-19-1573-4_6
Karahan ZC, Altinsoy İ, Çalişkan BN, Dede S, Kayiş G, Türkoğlu HC, Evren E, Doğanay Erdoğan B, Kiliç SG, Dolapçi İ, Tekeli A (2023) Investigation of the presence of Capnophilic bacteria in routine urine cultures. Eur J Clin Microbiol Infect Dis 42(4):519–524. https://doi.org/10.1007/s10096-023-04570-4
Kato C, Bartlett D (1997) The molecular biology of barophilic bacteria, vol 1. Extremophiles, pp 111–116. https://doi.org/10.1007/s007920050023
Kauth M, Trusova OV (2022) Topical ectoine application in children and adults to treat inflammatory diseases associated with an impaired skin barrier: a systematic review. Dermatol Ther 12(2):295–313
Keller M, Hettich R (2009) Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol Mol Biol Rev 73(1):62–70. https://doi.org/10.1128/mmbr.00028-08
Kevbrin VV (2019) Isolation and cultivation of alkaliphiles. Adv Biochem Engin/Biotechnol 53–84. https://doi.org/10.1007/10_2018_84
Khalikova E, Somersalo S, Korpela T (2019) Metabolites produced by alkaliphiles with potential biotechnological applications. InAlkaliphiles in Biotechnology. Adv Biochem Engin/Biotechnol 172. https://doi.org/10.1007/10_2019_96
Kobayashi J, Ohkusu M, Matsumoto T, Kubota N, Ishiwada N (2023) Bacteriological and molecular characterization of temperature- and CO2-dependent Streptococcus pneumoniae serotype 24F ST162 isolated from Japanese children. Microbiol Spectr 11(6). https://doi.org/10.1128/spectrum.02165-23
Krulwich TA (1995) Alkaliphiles: ‘basic’molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15(3):403–410. https://doi.org/10.1111/j.1365-2958.1995.tb02253.x
Kumar S (1998) Enzyme vs. extremozyme. Resonance 3(3):32–40. https://doi.org/10.1007/bf02837612
Kumar V, Singh B, van Belkum MJ, Diep DB, Chikindas ML, Ermakov AM, Tiwari SK (2021) Halocins, natural antimicrobials of Archaea: exotic or special or both? Biotechnol Adv 53:107834. https://doi.org/10.1016/j.biotechadv.2021.107834
Kushkevych I, Cejnar J, Vítězová M, Vítěz T, Dordević D, Bomble YJ (2019) Occurrence of thermophilic microorganisms in different full scale biogas plants. Int J Mol Sci 21(1):283. https://doi.org/10.3390/ijms21010283
Lacerda FS, de Duarte A, de Fernandes E (2016) A Microbiology for environmental conservation: a systematic review of bioremediation of heavy metals by Chromobacterium violaceum. Gaia Scientia 10(4):408–423. https://doi.org/10.21707/gs.v10.n04a32
Li L, Liu Z, Zhang M, Meng D, Liu X, Wang P, Li X, Jiang Z, Zhong S, Jiang C, Yin H (2020) Insights into the metabolism and evolution of the genus Acidiphilium, a typical acidophile in acid mine drainage. M Syst 5(6). https://doi.org/10.1128/msystems.00867-20
Little MG, Jackson RB (2010) Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environ Sci Technol 44:9225–9232. https://doi.org/10.1021/es102235w
Luo J, Wang T, Li X, Yang Y, Zhou M, Li M, Yan Z (2018) Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs. Biosens Bioelectron 117:23–31. https://doi.org/10.1016/j.bios.2018.05.052
Lusk BG (2019) Thermophiles; or, the modern prometheus: the importance of extreme microorganisms for understanding and applying extracellular electron transfer. https://doi.org/10.3389/fmicb.2019.00818. Front Microbiol10
Madigan MT (2000) Extremophilic bacteria and microbial diversity. Ann Missouri Bot Gard 87(1):3. https://doi.org/10.2307/2666205
Majumder S, Gangadhar G, Raghuvanshi S, Gupta S (2015) A comprehensive study on the behavior of a novel bacterial strain Acinetobacter guillouiae for bioremediation of divalent copper. Bioprocess Biosyst Eng 38(9):1749–1760. https://doi.org/10.1007/s00449-015-1416-5
Malik K, Kumari N, Ahlawat S, Kumar U, Sindhu M (2020) Extremophile microorganisms and their industrial applications. Microb Divers Interventions Scope 137–156. https://doi.org/10.1007/978-981-15-4099-8_10
Mamo G, Mattiasson B (2019) Alkaliphiles: the emerging biological tools enhancing concrete durability. Adv Biochem Engin/Biotechnol 293–342. https://doi.org/10.1007/10_2019_94
Mandal S, Jawed JJ (2023) Alkaliphiles: diversity, adaptation and applications. Extremophiles: Divers Adaptation Appl 120–145. https://doi.org/10.2174/9789815080353122010009
Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31(8–9):835–844. https://doi.org/10.1080/09593331003663328
Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663. https://doi.org/10.1007/s002530100701
Marietou A, Bartlett DH (2014) Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity. Appl Environ Microbiol 80(19):5992–6003. https://doi.org/10.1128/aem.02109-14
Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49(2):351–359. https://doi.org/10.1099/00207713-49-2-351
Mead A, Azzariti S, Pelligand L (2023) Hollow-fibre infection model: adaptations for the culture and assessment of fastidious organisms. https://doi.org/10.1099/acmi.0.000744.v1
Memarpoor-Yazdi M, Karbalaei-Heidari HR, Khajeh K (2017) Production of the renewable extremophile lipase: Valuable biocatalyst with potential usage in food industry. Food Bioprod Process 102:153–166. https://doi.org/10.1016/j.fbp.2016.12.015
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D (2019) Living at the extremes: Extremophiles and the limits of life in a planetary context. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00780
Meruelo AD, Han SK, Kim S, Bowie JU (2012) Structural differences between thermophilic and mesophilic membrane proteins. Protein Sci 21(11):1746–1753. https://doi.org/10.1002/pro.2157
Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV (2010) Extremophilic microorganisms: biochemical adaptation and biotechnological application (review). Appl Biochem Microbiol 46(1):1–14. https://doi.org/10.1134/s0003683810010011
Mukhtar S, Zareen M, Khaliq Z, Mehnaz S, Malik KA (2019) Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate- solubilizing biofertilizers on maize growth under salinity stress conditions. J Appl Microbiol 128(2):556–573. https://doi.org/10.1111/jam.14497
Müller AL, de Rezende JR, Hubert CRJ, Kjeldsen KU, Lagkouvardos I, Berry D, Jørgensen BB, Loy A (2013) Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME J 8(6):1153–1165. https://doi.org/10.1038/ismej.2013.225
Muro-González DA, Mussali-Galante P, Valencia-Cuevas L, Flores-Trujillo K, Tovar-Sánchez E (2020) Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopislaevigata reveal its potential for phytoremediation. Environ Sci Pollut Res 27:40187–40204
Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from mars analog Antarctic Dry valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology 15(12):1076–1090. https://doi.org/10.1089/ast.2014.1278
Naik MM, Shamim K, Dubey SK (2012) Biological characterization of lead-resistant bacteria to explore role of bacterial metallothionein in lead resistance. Curr Sci 426–429
Neifar M, Chouchane H, Najjari A, El Hidri D, Mahjoubi M, Ghedira K, Naili F, Soufi L, Raddadi N, Sghaier H, Ouzari HI, Masmoudi AS, Cherif A (2019) Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert. Genomics 111(6):1802–1814. https://doi.org/10.1016/j.ygeno.2018.12.003
Nies D (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4:77–82. https://doi.org/10.1007/s007920050140
Nuzzo G, Landi S, Esercizio N, Manzo E, Fontana A, d’Ippolito G (2019) Capnophiliclactic fermentation from Thermotogane apolitana: a resourceful pathway to obtain almost enantiopure L-lactic acid. Fermentation 5(2):34. https://doi.org/10.3390/fermentation5020034
Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1(1). https://doi.org/10.1186/1746-1448-1-2
Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst4. https://doi.org/10.1186/1746-1448-4-2
Pandey A (2019) Are dark septate endophytes bioindicators of climate in mountain ecosystems? Rhizosphere 9:110–111. https://doi.org/10.1016/j.rhisph.2019.01.001
Pandey A, Yarzábal LA (2019) Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol 103(2):643–657. https://doi.org/10.1007/s00253-018-9515-2
Pandey A, Jain R, Sharma A, Dhakar K, Gaira GS, Rahi P, Dhyani A, Pandey N, Adhikari P, Shouche YS (2019a) 16S rRNA gene sequencing and MALDI-TOF mass spectrometry based comparative assessment and bioprospection of psychrotolerant bacteria isolated from high altitudes under mountain ecosystem. SN Appl Sci 1:278. https://doi.org/10.1007/s42452-019-0273-2
Pandey A, Dhakar K, Jain R, Pandey N, Gupta VK, Kooliyottil R, Dhyani A, Malviya MK, Adhikari P (2019b) Cold adapted fungi from Indian Himalaya: Untapped source for bioprospecting. Proceedings of the National Academy of Sciences, India (Section B): Biological Sciences. 89: 1125–1132.https://doi.org/10.1007/s40011-018-1002-0
Pandey A, Sharma A, Taylor, Francis (2021) https://www.routledge.com/Extreme-Environments-Unique-Ecosystems-Amazing-Microbes/Pandey-Sharma/p/book/9780367350161
Perez Saura P, Chabi M, Corato A, Cardol P, Remacle C (2022) Cell adaptation of the extremophilic red microalga Galdieria sulphuraria to the availability of carbon sources. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.978246
Piterina AV, Bartlett J, Tony Pembroke J (2012) Phylogenetic analysis of the bacterial community in a full scale autothermal thermophilic aerobic digester (ATAD) treating mixed domestic wastewater sludge for land spread. Water Res 46(8):2488–2504. https://doi.org/10.1016/j.watres.2012.01.045
Pitonzo BJ, Amy PS, Rudin M (1999) Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site. Radiat Res 152(1):64. https://doi.org/10.2307/3580050
Pyzik A, Ciuchcinski K, Dziurzynski M, Dziewit L (2021) The bad and the good—microorganisms in Cultural Heritage Environments—An update on Biodeterioration and Biotreatment approaches. Materials 14(1):177. https://doi.org/10.3390/ma14010177
Ragon M, Restoux G, Moreira D, Møller AP, López-García P (2011) Sunlight-exposed biofilm microbial communities are naturally resistant to Chernobyl ionizing-radiation levels. PLoS ONE 6(7):e21764. https://doi.org/10.1371/journal.pone.0021764
Rampelotto PH (2013) Extremophiles and Extreme Environments. Life, 3(3), 482–485. https://doi.org/10.3390/life3030482
Ranalli G, Zanardini E (2021) Biocleaning on Cultural Heritage: new frontiers of microbial biotechnologies. J Appl Microbiol 131(2):583–603. https://doi.org/10.1111/jam.14993
Ratzke C, Gore J (2018) Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol 16(3):e2004248. https://doi.org/10.1371/journal.pbio.2004248
Roh SW, Nam YD, Chang HW, Kim KH, Sung Y, Kim MS, Oh HM, Bae JW (2009) Haloterrigena jeotgali sp. nov., an extremely halophilic archaeon from salt-fermented food. Int J Syst Evol Microbiol 59(9):2359–2363. https://doi.org/10.1099/ijs.0.008243-0
Santillan EU, Kirk MF, Altman SJ, Bennett PC (2013) Mineral influence on microbial survival during carbon sequestration. Geomicrobiol J 30:578–592. https://doi.org/10.1080/01490451.2013.767396
Santillan EFU, Shanahan TM, Omelon CR, Major JR, Bennett PC (2015) Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A. Front Earth Sci 3. https://doi.org/10.3389/feart.2015.00041
Santos AP, Belfiore C, Úrbez C, Ferrando A, Blázquez MA, Farías ME (2022) Extremophiles as plant probiotics to promote germination and alleviate salt stress in soybean. J Plant Growth Regul 42(2):946–959. https://doi.org/10.1007/s00344-022-10605-5
Scoma A, Garrido-Amador P, Nielsen SD, Røy H, Kjeldsen KU (2019) The polyextremophilic bacterium Clostridium paradoxum attains piezophilic traits by modulating its energy metabolism and cell membrane composition. Appl Environ Microbiol 85(15). https://doi.org/10.1128/aem.00802-19
Sekar N, Wu C, Adams MWW, Ramasamy RP (2017) Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C. Biotechnol Bioeng 114(7):1419–1427. https://doi.org/10.1002/bit.26271
Sen SK, Raut S, Dora TK, Mohapatra PKD (2014) Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. J Hazard Mater 265:47–60. https://doi.org/10.1016/j.jhazmat.2013.11.036
Sharma N, Farooqi MS, Chaturvedi KK, Lal SB, Grover M, Rai A, Pandey P (2014) The Halophile protein database. Database 2014:articleIDbau114. https://doi.org/10.1093/database/bau114
Sharma A, Jani K, Feng GD, Karodi P, Vemuluri VR, Zhu HH, Shivaji S, Thite V, Kajale S, Rahi P, Shouche Y (2018) Subsaxibacter sediminis sp. nov., isolated from Arctic glacial sediment and emended description of the genus Subsaxibacter. Int J Syst Evol Microbiol 68(5):1678–1682. https://doi.org/10.1099/ijsem.0.002729
Singh G, Bhalla A, Ralhan PK (2011) Extremophiles and extremozyrnes: importance in current biotechnology. Extreme Life. Biospeology& Astrobiology 3(1):46–54
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T (2016) Thermophilic molds: Biology and applications. Crit Rev Microbiol 42(6):985–1006. https://doi.org/10.3109/1040841x.2015.1122572
Smedile F, Foustoukos DI, Patwardhan S, Mullane K, Schlegel I, Adams MW, Schut GJ, Giovannelli D, Vetriani C (2022) Adaptations to high pressure of Nautilia sp. strain PV-1, a piezophilic Campylobacterium (aka Epsilonproteobacterium) isolated from a deep-sea hydrothermal vent. Environ Microbiol 24(12):6164–6183. https://doi.org/10.1111/1462-2920.16256
Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15(5):613–620. https://doi.org/10.1016/j.mib.2012.09.001
Tamaru Y, Miyake H, Kuroda K, Ueda M, Doi RH (2010) Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing. Environ Technol 31(8–9):889–903
Thathola P, Agnihotri V, Pandey A (2021) Microbial degradation of caffeine using himalayan psychrotolerant Pseudomonas sp.GBPI_Hb5 (MCC 3295). Curr Microbiol 78(11):3924–3935. https://doi.org/10.1007/s00284-021-02644-0
Thathola P, Aghnihotri V, Pandey A, Upadhyaya SK (2022) Biodegradation of Bisphenol A using psychrotolerant bacterial strain Pseudomonas palleroniana GBPI_508. Arch Microbiol 204(5):272. https://doi.org/10.1007/s00203-022-02885-y
Thombre RS, Vaishampayan PA, Gomez F (2020) Applications of extremophiles in astrobiology. Physiological Biotechnol Aspects Extremophiles 89–104. https://doi.org/10.1016/b978-0-12-818322-9.00007-1
Tian B, Li J, Pang R, Dai S, Li T, Weng Y, Jin Y, Hua Y (2018) Gold nanoparticles biosynthesized and functionalized using a hydroxylated tetraterpenoid trigger gene expression changes and apoptosis in cancer cells. ACS Appl Mater Interfaces 10(43):37353–37363. https://doi.org/10.1021/acsami.8b09206
Tovar-Sánchez E, Concepción-Acosta CM, Sánchez-Reyes A, Sánchez-Cruz R, Folch-Mallol JL, Mussali-Galante P (2023) Aspergillus luchuensis, an endophyte fungus from the metal hyperaccumulator plant Prosopislaevigata, promotes its growth and increases metal translocation. Plants 12(6):1338. https://doi.org/10.3390/plants12061338
Tran TTT, Kannoorpatti K, Padovan A, Thennadil S (2021) Sulphate-reducing bacteria’s response to extreme Ph environments and the effect of their activities on microbial corrosion. Appl Sci 11(5):2201. https://doi.org/10.3390/app11052201
Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9. https://doi.org/10.1186/1475-2859-6-9
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H, Sharma A (2023) Synergistic impact of nanomaterials and plant probiotics in agriculture: a tale of two-way strategy for long-term sustainability. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1133968
Uqab B, Nazir R, Ahmad Ganai B, Rahi P, Rehman S, Farooq S, Dar R, Parray JA, Fahad Al-Arjani Al-Arjani AB, Tabassum B, Fathi Abd_Allah E (2020) MALDI-TOF-MS and 16S rRNA characterization of lead tolerant metallophile bacteria isolated from saffron soils of Kashmir for their sequestration potential. Saudi J Biol Sci 27(8):2047–2053. https://doi.org/10.1016/j.sjbs.2020.04.021
Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol Adv 33(6):633–647. https://doi.org/10.1016/j.biotechadv.2015.04.007
Whyte LG, Bourbonniére L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63(9):3719–3723. https://doi.org/10.1128/aem.63.9.3719-3723.1997
Yadav AN, Yadav N, Sachan SG, Saxena AK (2019) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotech 7:99–108. doi: https://doi.org/10.7324/JABB.2019.70415
Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria Acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51(6):443–455. https://doi.org/10.1007/s10267-010-0059-2
Yan N, Marschner P (2012) Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity. Soil Biol Biochem 53:50–55. https://doi.org/10.1016/j.soilbio.2012.04.028
Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Ann Rev Microbiol 49(1):777–805. https://doi.org/10.1146/annurev.mi.49.100195.004021
Yu J, Lu K, Zi J, Yang X, Zheng Z, Xie W (2022) Halophilic bacteria as starter cultures: a new strategy to accelerate fermentation and enhance flavor of shrimp paste. Food Chem 393:133393. https://doi.org/10.1016/j.foodchem.2022.133393
Zalar P, De Hoog GS, Gunde-Cimerman N (1999) Trimmatostroma salinum, a new species from hypersaline water. Studies in Mycology, 1999(43):57–62
Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J (2020) Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00483
Acknowledgements
Graphic Era (Deemed to be University) is acknowledged for extending the facilities.
Funding
Not Applicable.
Author information
Authors and Affiliations
Contributions
Conceptualization, A.P., and M.C.; writing—original draft preparation, M.R., M.C.; writing—review and editing, A.P. and M.C.; supervision, A.P. and M.C. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Communicated by Yusuf Akhter.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rawat, M., Chauhan, M. & Pandey, A. Extremophiles and their expanding biotechnological applications. Arch Microbiol 206, 247 (2024). https://doi.org/10.1007/s00203-024-03981-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00203-024-03981-x