Skip to main content

Neues zur Pathogenese primär systemischer Immunvaskulitiden

New pathogenetic aspects in primary systemic vasculitides

  • Schwerpunkt: Generalisierte und organbezogene Autoimmunerkrankungen
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Primär systemische Vaskulitiden werden aufgrund immunpathologischer Merkmale und entsprechend der Größe der befallenen Gefäße eingeteilt. Den 3 Kleingefäßvaskulitiden, die mit antineutrophilen zytoplasmatischen Autoantikörper (ANCA) assoziiert sind (Wegenersche Granulomatose, Churg-Strauss-Syndrom, mikroskopische Polyangiitis), stehen die sog. Nicht-ANCA-assoziierten Vaskulitiden gegenüber. Dies sind die granulomatösen Arteriitiden großer Gefäße (Riesenzellarteriitis, Takayasu-Arteriitis) und die Immunkomplexvaskulitiden mittelgroßer und kleiner Gefäße (Polyarteriitis nodosa, Kawasaki-Erkrankung und Henoch-Schönlein-Purpura, kryoglobulinämische Vaskulitis, kutane leukozytoklastische Angiitis). Prädisponierende genetische und weitere endogene und exogene Faktoren begünstigen eine Aktivierung der angeborenen bzw. natürlichen Immunität und induzieren über persistierende Entzündungsreaktionen die unterschiedlichen Formen der (Auto-)Immunvaskulitiden.

Abstract

Primary systemic vasculitides are defined according immunopathological features and the size of the involved vessels. Three anti-neutrophil cytoplasmic autoantibody (ANCA) associated small vessel vasculitides (Wegener’s granulomatosis, Churg-Strauss syndrome, microscopic polyangiitis) can be distinguished from the so-called Non-ANCA-associated vasculitides, i.e. granulomatous vasculitides of large vessels (giant cell arteritis, Takayasu arteritis) and immune complex-mediated vasculitides of medium-sized and small vessels (Polyarteriitis nodosa, Kawasaki disease and Henoch-Schönlein purpura, cryoglobulinemic vasculitis, cutaneous leukocytoklastische angiitis). Predisposing genetic and other endogenous and exogenous factors facilitate the activation of innate immunity and induce persisting inflammatory reactions resulting in different forms of (auto)-immune vasculitides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Allen AC, Willis FR, Beattie TJ, Feehally J (1998) Abnormal IgA glycosylation in Henoch-Schonlein purpura restricted to patients with clinical nephritis. Nephrol Dial Transplant 13: 930–934

    Article  PubMed  CAS  Google Scholar 

  2. Brogan PA, Shah V, Clark LA et al. (2008) T cell activation profiles in Kawasaki syndrome. Clin Exp Immunol 151: 267–274

    Article  PubMed  CAS  Google Scholar 

  3. Cauhan SK, Singh M, Nityanand S (2007) Reactivity of gamma/delta T cells to human 60-kd heat-shock protein and their cytotoxicity to aortic endothelial cells in Takayasu arteritis. Arthritis Rheum 56: 2798–2802

    Article  CAS  Google Scholar 

  4. Csernok E, Ai M, Gross WL et al. (2006) Wegener’s autoantigen induces maturation of dendritic cells and licences them for Th1 priming via the protease-activated receptor-2 pathway. Blood 107: 4440–4448

    Article  PubMed  CAS  Google Scholar 

  5. Csernok E, Lamprecht P, Gross WL (2006) Diagnostic significance of ANCA in vasculitis. Nat Clin Pract Rheumatol 2: 174–175

    Article  PubMed  Google Scholar 

  6. Evans JM, O’Fallon WM, Hunder GG (1995) Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann Intern Med 122: 502–507

    PubMed  CAS  Google Scholar 

  7. Ferri C, Mascia MT (2006) Cryoglobulinemic vasculitis. Curr Opin Rheumatol 18: 54–63

    PubMed  Google Scholar 

  8. Genereau T, Lortholary O, Pottier MA et al. (1999) Temporal artery biopsy: a diagnostic tool for systemic necrotizing vasculitis. French Vasculitis Study Group. Arthritis Rheum 42: 2674–2681

    Article  PubMed  CAS  Google Scholar 

  9. Gisselbrecht M, Cohen P, Lortholary O et al. (1998) Human immunodeficiency virus-related vasculitis. Clinical presentation of and therapeutic approach to eight cases. Ann Med Interne (Paris) 149: 398–405

    Google Scholar 

  10. Gogbashian A (2003) Sudden death in young athletes. N Engl J Med 349: 2464–2465

    Article  PubMed  CAS  Google Scholar 

  11. Guillevin L, Mahr A, Callard P et al. (2005) Hepatitis B virus-associated polyarteritis nodosa: clinical characteristics, outcome and impact of treatment in 115 patients. Medicine (Baltimore) 84: 313–322

    Google Scholar 

  12. Hellmich B, Holl-Ulrich K, Merz H, Gross WL (2008) Hypereosinophilic syndrome and Churg-Strauss syndrome: is it clinically relevant to differentiate these syndromes? Internist (Berl) 49: 286–296

    Google Scholar 

  13. Jayne D (2008) Challenges in the management of microscopic polyangiitis: past, present and future. Curr Opin Rheumatol 20: 3–9

    Article  PubMed  Google Scholar 

  14. Jennette JC, Falk RJ, Andrassy K et al. (1994) Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 37: 187–192

    Article  PubMed  CAS  Google Scholar 

  15. Jennette JC (2002) Implications for pathogenesis of patterns of injury in small- and medium-sized-vessel vasculitis. Cleve Clin J Med 69 (Suppl 2): SII33–38

    Article  PubMed  Google Scholar 

  16. Kessenbrock K, Fröhlich L, Sixt M et al. (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest 118: 2438–2447

    PubMed  CAS  Google Scholar 

  17. Lamprecht P, Gross WL (2008) Antineutrophil cytoplasmic antibody-associated vasculitis: autoinflammation, autodestruction and autoimmunity – key to new therapies. Trends Immunol 29: 587–588

    Article  PubMed  CAS  Google Scholar 

  18. Little MA, Smyth L, Yadav R et al. (2005) Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood 106: 2050–2058

    Article  PubMed  CAS  Google Scholar 

  19. Ma-Krupa W, Jeon MS, Spoerl S et al. (2004) Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J Exp Med 199: 173–183

    Article  PubMed  CAS  Google Scholar 

  20. Michalak T (1978) Immune complexes of hepatitis B surface antigen in the pathogenesis of periarteritis nodosa. A study of seven necropsy cases. Am J Pathol 90: 619–632

    PubMed  CAS  Google Scholar 

  21. Mueller A, Holl-Ulrich K, Lamprecht P, Gross WL (2008) Germinal centre-like structures in Wegener’s granulomatosis: the immunological basis for autoimmunity? Rheumatology 47: 1111–1113

    Article  PubMed  CAS  Google Scholar 

  22. Pryshchep O, Ma-Krupa W, Younge BR et al. (2008) Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 118: 1276–1284

    Article  PubMed  CAS  Google Scholar 

  23. Sansonno D, Tucci FA, Troiani L et al. (2008) Increased serum levels of the chemokine CXCL13 and up-regulation of its gene expression are distintive features of HCV-related cyroglubulinemia and correlate with active cutaneous vasculitis. Blood 112: 1620–1627

    Article  PubMed  CAS  Google Scholar 

  24. Seko Y, Sugishita K, Sato O et al. (2004) Expression of costimulatory molecules (4-1BBL and Fas) and major histocompatibility class I chain-related A (MICA) in aortic tissue with Takayasu’s areteritis. J Vas Res 41: 84–90

    Article  CAS  Google Scholar 

  25. Sollid LM, Vaage JT (2006) Cross-dressing T cells go wild. Nat Med 12: 611–612

    Article  PubMed  CAS  Google Scholar 

  26. Ullrich S, Gustke H, Lamprecht P et al. (2009) Severely impaired respiratory ciliar function in Wegener’s granulomatosis. Ann Rheum Dis [Epub ahead of print]

  27. Voswinkel J, Assmann G, Held G et al. (2008) Single cell analysis of B lymphocytes from Wegener’s granulomtosis: B cell receptors display affinity maturation within the granulomatous lesions. Clin Exp Immunol 154: 339–345

    Article  PubMed  CAS  Google Scholar 

  28. Wagner AD, Wittkop U, Prahst A et al. (2003) Dendritic cells co-localize with activated CD4+ T cells in giant cell arteritis. Clin Exp Rheumatol 21: 185–192

    PubMed  CAS  Google Scholar 

  29. Weyand CM, Goronzy JJ (2003) Medium- and large-vessel vasculitis. N Engl J Med 349: 160–169

    Article  PubMed  CAS  Google Scholar 

  30. Wieczorek S, Hellmich B, Arning L et al. (2008) Functionally relevant variations of the interleukin-10 Gene are associated with ANCA-negative Churg Strauss syndrome but not with wegener’s granulomatosis. Arthritis Rheum 58: 1839–1848

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Mein Dank gilt der Deutschen Forschungsgemeinschaft für die Unterstützung durch die Klinische Forschergruppe (KFO) 170 „Frühpathogenese der Wegenerschen Granulomatose: Von der natürlichen Abwehr mit Granulombildung zur Autoimmunität“ und dem Exzellenzcluster „Inflammation at Interfaces“ Research Area I-h.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lamprecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamprecht, P. Neues zur Pathogenese primär systemischer Immunvaskulitiden. Internist 50, 291–297 (2009). https://doi.org/10.1007/s00108-008-2300-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-008-2300-z

Schlüsselwörter

Keywords