Skip to main content

Advertisement

Isolation and characterization of microvascular endothelial cells from chicken fat pads

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Microvascular endothelial cells from abdominal fat pads of 6-wk-old broiler chickens were isolated to provide anin vitro system to study their physiological functions. The isolation procedure produced clumps of 10–30 cells, which attached to culture vessels in 4 h and attained confluency in 2 wk. At confluency, cells had a cobblestone appearance but were not contact inhibited and detached from the bottom of the culture vessel 2 wk after reaching confluency. The cells internalized acetylated low density lipoproteins, a characteristic of endothelial cells. This property was used to obtain pure endothelial cell cultures using the cell sorter. When cultured over Matrigel, a reconstituted matrix, the cells aligned themselves into chordlike structures and formed branching microvessels. Cells plated on type I collagen-coated culture flasks occasionally formed chordlike structures and proliferated at a faster rate than cells plated on Matrigel. Cells cultured on laminin-coated plates were slender and had long cytoplasmic extensions however, cells cultured on uncoated plastic had fibroblastic morphology. These properties are similar to those described for microvessel endothelial cells isolated from tissues of other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azizkhan, R. G.; Azizkhan, J. C.; Zetter, B. R., et al. Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J. Exp. Med. 152:931–944; 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Brenner, B. M.; Troy, J. L.; Ballermann, B. J. Endothelium-dependent vascular responses. Mediators and mechanisms. J. Clin. Invest. 84:1373–1378; 1989.

    PubMed  CAS  Google Scholar 

  3. Chung-Welch, N.; Patton, W. F.; Yen-Patton, G. P. A., et al. Phenotypic comparison between mesothelial and microvascular endothelial cell lineages using conventional endothelial cell markers, cytoskeletal protein markers and in vitro assay of angiogenic potential. Differentiation 42:44–53; 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Cotran, R. S. New role for endothelium in inflammation and immunity. Am. J. Pathol. 129(3):407–413; 1987.

    PubMed  CAS  Google Scholar 

  5. Cotta-Pereira, G.; Sage, H.; Bornstein, P., et al. Studies of morphologically atypical (“sprouting”) cultures of bovine aortic endothelial cells. Growth characteristics and connective tissue protein synthesis. J. Cell. Physiol. 102:183–191; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Fajardo, L. F. The complexity of endothelial cells. Am. J. Clin. Pathol. 92:241–250; 1989.

    PubMed  CAS  Google Scholar 

  7. Folkman, J. What is the role of endothelial cells in angiogenesis? Lab. Invest. 51 (6):601–604; 1984.

    PubMed  CAS  Google Scholar 

  8. Folkman, J. What is the evidence that tumors are angiogensis dependent? NCI 82:4–6; 1990.

    Article  CAS  Google Scholar 

  9. Folkman, J.; Cotran, R. S. Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16:207–248; 1976.

    PubMed  CAS  Google Scholar 

  10. Folkman, J.; Haudenschild, C. C. Angiogenesis in vitro. Nature 288:551–556; 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Garrido, T.; Riese, H. H.; Aracil, M., et al. Endothelial cell differentiation into capillary-like structures in response to tumor cell conditioned medium: a modified chemotaxis chamber assay. Br. J. Cancer 71:770–775; 1995.

    PubMed  CAS  Google Scholar 

  12. Gimbrone, M. A., Jr. Vascular endothelium: nature's blood-compatible container. Ann. NY Acad. Sci. 516:5–11; 1987.

    Article  PubMed  Google Scholar 

  13. Gimbrone, M. A.; Cotran, R. S.; Folkman, J. Human vascular endothelial cells in culture: growth and DNA synthesis. J. Cell Biol 60:673–682; 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Gitlin, J. D.; D'Amore, P. A. Culture of retinal capillary cells using selective media. Microvasc. Res. 26:74–80; 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Glaser, B. M.; D'Amore, P. A.; Lutty, G. A., et al. Chemical mediators of intraocular neovascularization. Trans. Ophthalmol. Soc. U.K. 100;369–373; 1980.

    PubMed  CAS  Google Scholar 

  16. Gospodarowicz, D.; Cheng, J.; Hirabayashi, K., et al. The extracellular matrix and the control of vascular endothelial and smooth muscle cell proliferation. In: Dingel, J. T.; Gordan, J. L., eds. Cellular interactions. Amsterdam, Netherlands: Elsevier/North-Holland Biomedical Press; 1981;135–165.

    Google Scholar 

  17. Hamerman, D.; Sasse, J.; Klagsbrun, M. A cartilage-derived growth factor enhances hyaluronate synthesis and diminishes sulfated glycosaminoglycans synthesis in chondrocytes. J. Cell. Physiol. 127:317–322; 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Hewett, P. W.; Murray, J. C. Human omental mesothelial cells: a simple method for isolation and discrimination from endothelial cells. In Vitro Cell. Dev. Biol. 30A:145–147; 1994.

    Article  Google Scholar 

  19. Hewett, P. W.; Murray, J. C.; Price, E. A., et al. Isolation and characterization of microvascular endothelial cells from human mammary adipose tissue. In Vitro Cell. Dev. Biol. 29A:325–331; 1993.

    Article  CAS  Google Scholar 

  20. Ingber, D. E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Jaffe, E. A.; Hoyer, L. W.; Nachman, R. L. Synthesis of Von Willebrand factor by cultured endothelial cells. Proc. Natl. Acad. Sci. USA 71(5):1906–1906; 1974.

    Article  PubMed  CAS  Google Scholar 

  22. Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells devived from umbilical veins: identification by morphological and immunological criteria. J. Clin. Invest. 52:2745–2758; 1973.

    Article  PubMed  CAS  Google Scholar 

  23. Kern, P. A.; Knedler, A.; Eckel, R. H. Isolation and culture of microvascular endothelium from human adipose tissue. J. Clin. Invest. 71:1822–1829; 1983.

    PubMed  CAS  Google Scholar 

  24. Kleinman, H. K.; McCarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type 1V procollagen, laminin, and heparan sulfate proteoglycan from EHS sarcoma. Biochemistry 21:6188–6193; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Kubota, Y.; Kleinman, H. K.; Martin, G. R., et al. Role of laminin and basement membrane in the morphologic differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1598; 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar, S.; West, D. C.; Ager, A. Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36:57–70; 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Madri, J. A.; Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34(1):85–91; 1986.

    PubMed  CAS  Google Scholar 

  28. Montesano, R.; Orci, L.; Vassalli, P.. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Montesano, R.; Pepper, M. S.; Mohle-Steinlein, U., et al. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445; 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Nehls, V.; Denzer, K.; Drenckhann, D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 270:469–474; 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Nicosia, R. F.; Ottinetti A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen fibrin, and plasma clot. In Vitro Cell. Dev. Biol. 26:119–128; 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Robinson, D. H.; Kang, Y.-H.; Deschner, S. H., et al. Morphologic plasticity and periodicity: porcine cerebral microvascular cells in culture. In Vitro Cell. Dev. Biol. 26:169–180; 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Sage, Y.; Pritzl, P.; Bornstein, P. Secretory phenotypes of endothelial cell in culture: comparison of aortic, venous, capillary and corneal endothelium. Arteriosclerosis 1:427–442; 1981.

    PubMed  CAS  Google Scholar 

  34. Sato, Y.; Rifklin, D. B. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis and DNA synthesis. J. Cell Biol. 107:1199–1205; 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Simonescu, M.; Simonescu, N.; Palade, G. E. Segmental differentiation of cell junctions in the vascular endothelium. The microvasculature. J. Cell Biol. 67:863–885; 1975.

    Article  Google Scholar 

  36. Simonescu, M.; Simonescu, N.; Palade, G. E. Segmental differentiation of cell junctions in the vascular endothelium. Arteries and veins. J. Cell Biol. 68:705–723; 1976.

    Article  Google Scholar 

  37. Streeten, E. A.; Brandi, M. L. Biology of bone endothelial cells. Bone Miner. 10:85–94; 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi, K.; Sawasaki, Y.; Goto, T. et al. Cobblestone monolayer cells from human omental adipose tissue are possibly mesothelial cells not endothelial. In Vitro Cell. Dev. Biol. 25A:109–111; 1989.

    Article  Google Scholar 

  39. Titani, K.; Walsh, K. A. Human von Willebrand factor: the molecular glue of platelet plugs. Trends Biochem. Sci. 13:94–97; 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Tseng, S. C.; Savion, N.; Gospodarowicz, D., et al. Characterization of collagens synthesized by cultured bovine corneal endothelial cells. J. Biol. Chem. 256(7):3361–3365; 1981.

    PubMed  CAS  Google Scholar 

  41. Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell. Biol. 99:2034–2040; 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Wolf, J. E., Jr. Angiogenesis in normal and psoriatic skin. Lab. Invest. 61(2):139–142; 1989.

    PubMed  Google Scholar 

  43. Yanagisawa, M.; Kurihara, H.; Kimura, S., et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415; 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Zetter, B. R. Angiogenesis. State of the art. Chest (Suppl.) 93(3):1595–1665; 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Twal, W.O., Leach, R.M. Isolation and characterization of microvascular endothelial cells from chicken fat pads. In Vitro Cell.Dev.Biol.-Animal 32, 403–408 (1996). https://doi.org/10.1007/BF02723002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723002

Key words