Skip to main content

Characteristics and Functions of HEV Proteins

  • Chapter
  • First Online:
Hepatitis E Virus

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1417))

Abstract

Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5′ non-coding region, three open reading frames (ORFs), and a 3′ non-coding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in culture and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome, but is also involved in many important physiological activities, such as virus assembly, infection, host interaction, and innate immune response. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity. A novel ORF4 has been identified only in genotype 1 HEV and its translation promotes viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASGR:

Asialoglycoprotein receptor

CDK:

Cyclin-dependent kinase

eEF1α1:

Eukaryotic translation elongation factor 1α isoform1

EGFR:

Epidermal growth factor receptor

ER:

Endoplasmic reticulum

ERK:

External cellular regulatory kinase

FTL:

Human ferritin light chain

GST:

Glutathione S-transferase

Hel:

RNA helicase

HVR:

Proline-rich hypervariable region

IRF3:

IFN regulatory factor 3

ISG:

IFN-stimulated gene

MAPK:

Mitogen-activated protein kinases

MeT:

Methyltransferase

ORF:

Open reading frame

PCP:

Papain-like cysteine protease

PLG:

Plasminogen

RdRp:

RNA-dependent RNA polymerase

RIG-I:

Retinoic acid-inducible gene I

STAT:

Signal transducer and activator of transcription

VDAC:

Voltage-dependent anion channel

VLP:

Virus-like particle

References

  1. Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72(Pt 9):2197–2206

    Article  PubMed  Google Scholar 

  2. Koonin EV, Gorbalenya AE, Purdy MA, Rozanov MN, Reyes GR, Bradley DW (1992) Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A 89(17):8259–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ropp SL, Tam AW, Beames B, Purdy M, Frey TK (2000) Expression of the hepatitis E virus ORF1. Arch Virol 145(7):1321–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ansari IH, Nanda SK, Durgapal H, Agrawal S, Mohanty SK, Gupta D et al (2000) Cloning, sequencing, and expression of the hepatitis E virus (HEV) nonstructural open reading frame 1 (ORF1). J Med Virol 60(3):275–283

    Article  CAS  PubMed  Google Scholar 

  5. Suppiah S, Zhou Y, Frey TK (2011) Lack of processing of the expressed ORF1 gene product of hepatitis E virus. Virol J 8:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Panda SK, Ansari IH, Durgapal H, Agrawal S, Jameel S (2000) The in vitro-synthesized RNA from a cDNA clone of hepatitis E virus is infectious. J Virol 74(5):2430–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parvez MK (2013) Molecular characterization of hepatitis E virus ORF1 gene supports a papain-like cysteine protease (PCP)-domain activity. Virus Res 178(2):553–556

    Article  CAS  PubMed  Google Scholar 

  8. Sehgal D, Thomas S, Chakraborty M, Jameel S (2006) Expression and processing of the Hepatitis E virus ORF1 nonstructural polyprotein. Virol J 3:38

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paliwal D, Panda SK, Kapur N, Varma SPK, Durgapal H (2014) Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein. J Gen Virol 95(Pt 8):1689–1700

    Article  CAS  PubMed  Google Scholar 

  10. Lhomme S, Garrouste C, Kamar N, Saune K, Abravanel F, Mansuy JM et al (2014) Influence of polyproline region and macro domain genetic heterogeneity on HEV persistence in immunocompromised patients. J Infect Dis 209(2):300–303

    Article  CAS  PubMed  Google Scholar 

  11. Ojha NK, Lole KS (2016) Hepatitis E virus ORF1 encoded macro domain protein interacts with light chain subunit of human ferritin and inhibits its secretion. Mol Cell Biochem 417(1-2):75–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bu Q, Wang X, Wang L, Liu P, Geng J, Wang M et al (2013) Hepatitis E virus genotype 4 isolated from a patient with liver failure: full-length sequence analysis showing potential determinants of virus pathogenesis. Arch Virol 158(1):165–172

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Y, Yu X, Huang F, Yu R, Dong S, Si F et al (2012) Determination of the full-genome sequence of hepatitis E virus (HEV) SAAS-FX17 and use as a reference to identify putative HEV genotype 4 virulence determinants. Virol J 9:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mishra N, Walimbe AM, Arankalle VA (2013) Hepatitis E virus from India exhibits significant amino acid mutations in fulminant hepatic failure patients. Virus Genes 46(1):47–53

    Article  CAS  PubMed  Google Scholar 

  15. Inoue J, Takahashi M, Mizuo H, Suzuki K, Aikawa T, Shimosegawa T et al (2009) Nucleotide substitutions of hepatitis E virus genomes associated with fulminant hepatitis and disease severity. Tohoku J Exp Med 218(4):279–284

    Article  CAS  PubMed  Google Scholar 

  16. Billam P, Sun ZF, Meng XJ (2007) Analysis of the complete genomic sequence of an apparently avirulent strain of avian hepatitis E virus (avian HEV) identified major genetic differences compared with the prototype pathogenic strain of avian HEV. J Gen Virol 88(pt 5):1538–1544

    Article  CAS  PubMed  Google Scholar 

  17. Huang YW, Haqshenas G, Kasorndorkbua C, Halbur PG, Emerson SU, Meng XJ (2005) Capped RNA transcripts of full-length cDNA clones of swine hepatitis E virus are replication competent when transfected into Huh7 cells and infectious when intrahepatically inoculated into pigs. J Virol 79(3):1552–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Magden J, Takeda N, Li T, Auvinen P, Ahola T, Miyamura T et al (2001) Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J Virol 75(14):6249–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang M, Purcell RH, Emerson SU (2001) Identification of the 5′ terminal sequence of the SAR-55 and MEX-14 strains of hepatitis E virus and confirmation that the genome is capped. J Med Virol 65(2):293–295

    Article  CAS  PubMed  Google Scholar 

  20. Karpe YA, Lole KS (2010) RNA 5′-triphosphatase activity of the hepatitis E virus helicase domain. J Virol 84(18):9637–9641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karpe YA, Lole KS (2010) NTPase and 5′ to 3′ RNA duplex-unwinding activities of the hepatitis E virus helicase domain. J Virol 84(7):3595–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agrawal S (2001) The 3′ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology 282(1):87–101

    Article  CAS  PubMed  Google Scholar 

  23. Huang F, Hua X, Yang S, Yuan C, Zhang W (2009) Effective inhibition of hepatitis E virus replication in A549 cells and piglets by RNA interference (RNAi) targeting RNA-dependent RNA polymerase. Antiviral Res 83(3):274–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karpe YA, Meng XJ (2012) Hepatitis E virus replication requires an active ubiquitin-proteasome system. J Virol 86(10):5948–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parvez MK (2015) The hepatitis E virus ORF1 ‘X-domain’ residues form a putative macrodomain protein/Appr-1″-pase catalytic-site, critical for viral RNA replication. Gene 566(1):47–53

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parvez MK (2017) Mutational analysis of hepatitis E virus ORF1 “Y-domain”: effects on RNA replication and virion infectivity. World J Gastroenterol 23(4):590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanade GD, Pingale KD, Karpe YA (2018) Activities of thrombin and factor Xa are essential for replication of hepatitis E virus and are possibly implicated in ORF1 polyprotein processing. J Virol 92(6):e01853

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahmad I, Holla RP, Jameel S (2011) Molecular virology of hepatitis E virus. Virus Res 161(1):47–58

    Article  CAS  PubMed  Google Scholar 

  29. Chandra V, Holla P, Ghosh D, Chakrabarti D, Padigaru M, Jameel S (2011) The hepatitis E virus ORF3 protein regulates the expression of liver-specific genes by modulating localization of hepatocyte nuclear factor 4. PloS One 6(7):e22412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chandra V, Kalia M, Hajela K, Jameel S (2010) The ORF3 protein of hepatitis E virus delays degradation of activated growth factor receptors by interacting with CIN85 and blocking formation of the Cbl-CIN85 complex. J Virol 84(8):3857–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chandra V, Kar-Roy A, Kumari S, Mayor S, Jameel S (2008) The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response. J Virol 82(14):7100–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Zhang Q, He C, Zhang L, Li J, Zhang W et al (2012) Recombination and natural selection in hepatitis E virus genotypes. J Med Virol 84(9):1396–1407

    Article  CAS  PubMed  Google Scholar 

  33. Ding Q, Heller B, Capuccino JM, Song B, Nimgaonkar I, Hrebikova G et al (2017) Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc Natl Acad Sci U S A 114(5):1147–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong C, Zafrullah M, Mixson-Hayden T, Dai X, Liang J, Meng J et al (2012) Suppression of interferon-alpha signaling by hepatitis E virus. Hepatology 55(5):1324–1332

    Article  CAS  PubMed  Google Scholar 

  35. Dotzauer A, Brenner M, Gebhardt U, Vallbracht A (2005) IgA-coated particles of Hepatitis A virus are translocalized antivectorially from the apical to the basolateral site of polarized epithelial cells via the polymeric immunoglobulin receptor. J Gen Virol 86(Pt 10):2747–2751

    Article  CAS  PubMed  Google Scholar 

  36. Emerson SU, Nguyen HT, Torian U, Burke D, Engle R, Purcell RH (2010) Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. J Virol 84(18):9059–9069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Emerson SU, Nguyen HT, Torian U, Mather K, Firth AE (2013) An essential RNA element resides in a central region of hepatitis E virus ORF2. J Gen Virol 94(Pt 7):1468–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Geng Y, Yang J, Huang W, Harrison TJ, Zhou Y, Wen Z et al (2013) Virus host protein interaction network analysis reveals that the HEV ORF3 protein may interrupt the blood coagulation process. PloS One 8(2):e56320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graff J, Nguyen H, Yu C, Elkins WR, St Claire M, Purcell RH et al (2005) The open reading frame 3 gene of hepatitis E virus contains a cis-reactive element and encodes a protein required for infection of macaques. J Virol 79(11):6680–6689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guu TS, Liu Z, Ye Q, Mata DA, Li K, Yin C et al (2009) Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci U S A 106(31):12992–12997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He J, Tam AW, Yarbough PO, Reyes GR, Carl M (1993) Expression and diagnostic utility of hepatitis E virus putative structural proteins expressed in insect cells. J Clin Microbiol 31(8):2167–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hingane S, Joshi N, Surjit M, Ranjith-Kumar CT (2020) Hepatitis E virus ORF2 inhibits RIG-I mediated interferon response. Front Microbiol 11:656

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang R, Nakazono N, Ishii K, Li D, Kawamata O, Kawaguchi R et al (1995) Hepatitis E virus (87A strain) propagated in A549 cells. J Med Virol 47(4):299–302

    Article  CAS  PubMed  Google Scholar 

  44. Huang YW, Opriessnig T, Halbur PG, Meng XJ (2007) Initiation at the third in-frame AUG codon of open reading frame 3 of the hepatitis E virus is essential for viral infectivity in vivo. J Virol 81(6):3018–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Izopet J, Dubois M, Bertagnoli S, Lhomme S, Marchandeau S, Boucher S et al (2012) Hepatitis E virus strains in rabbits and evidence of a closely related strain in humans, France. Emerg Infect Dis 18(8):1274–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jameel S, Zafrullah M, Ozdener MH, Panda SK (1996) Expression in animal cells and characterization of the hepatitis E virus structural proteins. J Virol 70(1):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. John L, Thomas S, Herchenroder O, Putzer BM, Schaefer S (2011) Hepatitis E virus ORF2 protein activates the pro-apoptotic gene CHOP and anti-apoptotic heat shock proteins. PloS One 6(9):e25378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kalia M, Chandra V, Rahman SA, Sehgal D, Jameel S (2009) Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol 83(24):12714–12724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kannan H, Fan S, Patel D, Bossis I, Zhang YJ (2009) The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. J Virol 83(13):6375–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kar-Roy A, Korkaya H, Oberoi R, Lal SK, Jameel S (2004) The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. J Biol Chem 279(27):28345–28357

    Article  CAS  PubMed  Google Scholar 

  51. Kazachkov YA, Balayan MS, Ivannikova TA, Panina LI, Orlova TM, Zamyatina NA et al (1992) Hepatitis E virus in cultivated cells. Arch Virol 127(1-4):399–402

    Article  Google Scholar 

  52. Kenney SP, Pudupakam RS, Huang YW, Pierson FW, LeRoith T, Meng XJ (2012) The PSAP motif within the ORF3 protein of an avian strain of the hepatitis E virus is not critical for viral infectivity in vivo but plays a role in virus release. J Virol 86(10):5637–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khudyakov YE, Favorov MO, Jue DL, Hine TK, Fields HA (1994) Immunodominant antigenic regions in a structural protein of the hepatitis E virus. Virology 198(1):390–393

    Article  CAS  Google Scholar 

  54. Khudyakov YE, Khudyakova NS, Jue DL, Wells TW, Padhya N, Fields HA (1994) Comparative characterization of antigenic epitopes in the immunodominant region of the protein encoded by open reading frame 3 in Burmese and Mexican strains of hepatitis E virus. J Gen Virol 75(pt 3):641–646

    Article  CAS  Google Scholar 

  55. Korkaya H, Jameel S, Gupta D, Tyagi S, Kumar R, Zafrullah M et al (2001) The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. J Biol Chem 276(45):42389–42400

    Article  CAS  PubMed  Google Scholar 

  56. Li F, Zhuang H, Kolivas S, Locarnini SA, Anderson DA (1994) Persistent and transient antibody responses to hepatitis E virus detected by western immunoblot using open reading frame 2 and 3 and glutathione S-transferase fusion proteins. J Clin Microbiol 32(9):2060–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li SW, Zhang J, Li YM, Ou SH, Huang GY, He ZQ et al (2005) A bacterially expressed particulate hepatitis E vaccine: antigenicity, immunogenicity and protectivity on primates. Vaccine 23(22):2893–2901

    Article  CAS  PubMed  Google Scholar 

  58. Li T, Takeda N, Miyamura T (2001) Oral administration of hepatitis E virus-like particles induces a systemic and mucosal immune response in mice. Vaccine 19(25-26):3476–3484

    Article  CAS  PubMed  Google Scholar 

  59. Li TC, Suzaki Y, Ami Y, Dhole TN, Miyamura T, Takeda N (2004) Protection of cynomolgus monkeys against HEV infection by oral administration of recombinant hepatitis E virus-like particles. Vaccine 22(3-4):370–377

    Article  CAS  PubMed  Google Scholar 

  60. Li TC, Yamakawa Y, Suzuki K, Tatsumi M, Razak MA, Uchida T et al (1997) Expression and self-assembly of empty virus-like particles of hepatitis E virus. J Virol 71(10):7207–7213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin S, Yang Y, Nan Y, Ma Z, Yang L, Zhang YJ (2019) The capsid protein of hepatitis E virus inhibits interferon induction via its N-terminal arginine-rich motif. Viruses 11(11):1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moin SM, Chandra V, Arya R, Jameel S (2009) The hepatitis E virus ORF3 protein stabilizes HIF-1alpha and enhances HIF-1-mediated transcriptional activity through p300/CBP. Cell Microbiol 11(9):1409–1421

    Article  CAS  PubMed  Google Scholar 

  63. Moin SM, Panteva M, Jameel S (2007) The hepatitis E virus Orf3 protein protects cells from mitochondrial depolarization and death. J Biol Chem 282(29):21124–21133

    Article  CAS  PubMed  Google Scholar 

  64. Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C et al (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271(44):27205–27208

    Article  CAS  PubMed  Google Scholar 

  65. Nagashima S, Jirintai S, Takahashi M, Kobayashi T, Tanggis NT et al (2014) Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 95(Pt 10):2166–2175

    Article  PubMed  Google Scholar 

  66. Nagashima S, Takahashi M, Jirintai TT, Yamada K, Nishizawa T et al (2011) A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. J Gen Virol 92(pt 2):269–278

    Article  CAS  PubMed  Google Scholar 

  67. Nagashima S, Takahashi M, Jirintai S, Tanaka T, Nishizawa T, Yasuda J et al (2011) Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. J Gen Virol 92(Pt 12):2838–2848

    Article  CAS  PubMed  Google Scholar 

  68. Nagashima S, Takahashi M, Jirintai S, Tanggis KT, Nishizawa T et al (2014) The membrane on the surface of hepatitis E virus particles is derived from the intracellular membrane and contains trans-Golgi network protein 2. Arch Virol 159(5):979–991

    Article  CAS  PubMed  Google Scholar 

  69. Nair VP, Anang S, Subramani C, Madhvi A, Bakshi K, Srivastava A et al (2016) Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates efficient replication of genotype-1 hepatitis E virus. PLoS Pathog 12(4):e1005521

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nishiyama T, Umezawa K, Yamada K, Takahashi M, Kunita S, Mulyanto et al (2021) The capsid (ORF2) protein of hepatitis E virus in feces is C-terminally truncated. Pathogens 11(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  71. Panda SK, Nanda SK, Zafrullah M, Ansari IH, Ozdener MH, Jameel S (1995) An Indian strain of hepatitis E virus (HEV): cloning, sequence, and expression of structural region and antibody responses in sera from individuals from an area of high-level HEV endemicity. J Clin Microbiol 33(10):2653–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parvez MK, Al-Dosari MS (2015) Evidence of MAPK-JNK1/2 activation by hepatitis E virus ORF3 protein in cultured hepatoma cells. Cytotechnology 67(3):545–550

    Article  CAS  PubMed  Google Scholar 

  73. Purdy MA (2012) Evolution of the hepatitis E virus polyproline region: order from disorder. J Virol 86(18):10186–10193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Purdy MA, Lara J, Khudyakov YE (2012) The hepatitis E virus polyproline region is involved in viral adaptation. PloS One 7(4):e35974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Purdy MA, McCaustland KA, Krawczynski K, Tam A, Beach MJ, Tassopoulos NC et al (1992) Expression of a hepatitis E virus (HEV)-trpE fusion protein containing epitopes recognized by antibodies in sera from human cases and experimentally infected primates. Arch Virol 123(3–4):335–349

    Article  CAS  PubMed  Google Scholar 

  76. Qi Y, Fan J, Huang W, Zhao C, Wang Y, Kong FT et al (2016) Expression and characterization of hepatitis E virus-like particles and non-virus-like particles from insect cells. Biotechnol Appl Biochem 63(3):362–370

    Article  CAS  PubMed  Google Scholar 

  77. Qi Y, Zhang F, Zhang L, Harrison TJ, Huang W, Zhao C et al (2015) Hepatitis E virus produced from cell culture has a lipid envelope. PLoS One 10(7):e0132503

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ratra R, Kar-Roy A, Lal SK (2008) The ORF3 protein of hepatitis E virus interacts with hemopexin by means of its 26 amino acid N-terminal hydrophobic domain II. Biochemistry 47(7):1957–1969

    Article  CAS  PubMed  Google Scholar 

  79. Ratra R, Kar-Roy A, Lal SK (2009) ORF3 protein of hepatitis E virus interacts with the Bbeta chain of fibrinogen resulting in decreased fibrinogen secretion from HuH-7 cells. J Gen Virol 90(pt 6):1359–1370

    Article  CAS  PubMed  Google Scholar 

  80. Robinson RA, Burgess WH, Emerson SU, Leibowitz RS, Sosnovtseva SA, Tsarev S et al (1998) Structural characterization of recombinant hepatitis E virus ORF2 proteins in baculovirus-infected insect cells. Protein Expr Purif 12(1):75–84

    Article  CAS  PubMed  Google Scholar 

  81. Saunier B, Triyatni M, Ulianich L, Maruvada P, Yen P, Kohn LD (2003) Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 77(1):546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shiota T, Li TC, Yoshizaki S, Kato T, Wakita T, Ishii K (2013) The hepatitis E virus capsid C-terminal region is essential for the viral life cycle: implication for viral genome encapsidation and particle stabilization. J Virol 87(10):6031–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Surjit M, Jameel S, Lal SK (2004) The ORF2 protein of hepatitis E virus binds the 5′ region of viral RNA. J Virol 78(1):320–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Surjit M, Jameel S, Lal SK (2007) Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. J Virol 81(7):3339–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Surjit M, Oberoi R, Kumar R, Lal SK (2006) Enhanced alpha1 microglobulin secretion from Hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. J Biol Chem 281(12):8135–8142

    Article  CAS  PubMed  Google Scholar 

  86. Surjit M, Varshney B, Lal SK (2012) The ORF2 glycoprotein of hepatitis E virus inhibits cellular NF-kappaB activity by blocking ubiquitination mediated proteasomal degradation of IkappaBalpha in human hepatoma cells. BMC Biochem 13:7

    Article  CAS  PubMed  Google Scholar 

  87. Takahashi M, Yamada K, Hoshino Y, Takahashi H, Ichiyama K, Tanaka T et al (2008) Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Arch Virol 153(9):1703–1713

    Article  CAS  PubMed  Google Scholar 

  88. Tam AW, Smith MM, Guerra ME, Huang CC, Bradley DW, Fry KE et al (1991) Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 185(1):120–131

    Article  CAS  PubMed  Google Scholar 

  89. Torresi J, Li F, Locarnini SA, Anderson DA (1999) Only the non-glycosylated fraction of hepatitis E virus capsid (open reading frame 2) protein is stable in mammalian cells. J Gen Virol 80(pt 5):1185–1188

    Article  CAS  PubMed  Google Scholar 

  90. Torresi J, Meanger J, Lambert P, Li F, Locarnini SA, Anderson DA (1997) High level expression of the capsid protein of hepatitis E virus in diverse eukaryotic cells using the Semliki Forest virus replicon. J Virol Methods 69(1-2):81–91

    Article  CAS  PubMed  Google Scholar 

  91. Tsarev SA, Tsareva TS, Emerson SU, Govindarajan S, Shapiro M, Gerin JL et al (1997) Recombinant vaccine against hepatitis E: dose response and protection against heterologous challenge. Vaccine 15(17-18):1834–1838

    Article  CAS  PubMed  Google Scholar 

  92. Tsarev SA, Tsareva TS, Emerson SU, Kapikian AZ, Ticehurst J, London W et al (1993) ELISA for antibody to hepatitis E virus (HEV) based on complete open-reading frame-2 protein expressed in insect cells: identification of HEV infection in primates. J Infect Dis 168(2):369–378

    Article  CAS  PubMed  Google Scholar 

  93. Tyagi S, Korkaya H, Zafrullah M, Jameel S, Lal SK (2002) The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2. J Biol Chem 277(25):22759–22767

    Article  CAS  PubMed  Google Scholar 

  94. Tyagi S, Surjit M, Lal SK (2005) The 41-amino-acid C-terminal region of the hepatitis E virus ORF3 protein interacts with bikunin, a kunitz-type serine protease inhibitor. J Virol 79(18):12081–12087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tyagi S, Surjit M, Roy AK, Jameel S, Lal SK (2004) The ORF3 protein of hepatitis E virus interacts with liver-specific alpha1-microglobulin and its precursor alpha1-microglobulin/bikunin precursor (AMBP) and expedites their export from the hepatocyte. J Biol Chem 279(28):29308–29319

    Article  CAS  PubMed  Google Scholar 

  96. Wang CY, Miyazaki N, Yamashita T, Higashiura A, Nakagawa A, Li TC et al (2008) Crystallization and preliminary X-ray diffraction analysis of recombinant hepatitis E virus-like particle. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(pt 4):318–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wei S, Walsh P, Huang R, To SS (2000) 93G, a novel sporadic strain of hepatitis E virus in South China isolated by cell culture. J Med Virol 61(3):311–318

    Article  CAS  PubMed  Google Scholar 

  98. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR et al (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384(6608):432–438

    Article  CAS  PubMed  Google Scholar 

  99. Xing L, Li TC, Mayazaki N, Simon MN, Wall JS, Moore M et al (2010) Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J Biol Chem 285(43):33175–33183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu J, Wu F, Tian D, Wang J, Zheng Z, Xia N (2014) Open reading frame 3 of genotype 1 hepatitis E virus inhibits nuclear factor-kappa B signaling induced by tumor necrosis factor-alpha in human A549 lung epithelial cells. PLoS One 9(6):e100787

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xu L, Wang W, Li Y, Zhou X, Yin Y, Wang Y et al (2017) RIG-I is a key antiviral interferon-stimulated gene against hepatitis E virus regardless of interferon production. Hepatology 65(6):1823–1839

    Article  CAS  PubMed  Google Scholar 

  102. Yadav KK, Boley PA, Fritts Z, Kenney SP (2021) Ectopic expression of genotype 1 hepatitis E virus ORF4 increases genotype 3 HEV viral replication in cell culture. Viruses 13(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamada K, Takahashi M, Hoshino Y, Takahashi H, Ichiyama K, Nagashima S et al (2009) ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol 90(pt 8):1880–1891

    Article  CAS  PubMed  Google Scholar 

  104. Zafrullah M, Ozdener MH, Kumar R, Panda SK, Jameel S (1999) Mutational analysis of glycosylation, membrane translocation, and cell surface expression of the hepatitis E virus ORF2 protein. J Virol 73(5):4074–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zafrullah M, Ozdener MH, Panda SK, Jameel S (1997) The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton. J Virol 71(12):9045–9053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang H, Dai X, Shan X, Meng J (2008) The Leu477 and Leu613 of ORF2-encoded protein are critical in forming neutralization antigenic epitope of hepatitis E virus genotype 4. Cell Mol Immunol 5(6):447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang L, Tian Y, Wen Z, Zhang F, Qi Y, Huang W et al (2016) Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J Med Virol 88(12):2186–2195

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y, McAtee P, Yarbough PO, Tam AW, Fuerst T (1997) Expression, characterization, and immunoreactivities of a soluble hepatitis E virus putative capsid protein species expressed in insect cells. Clin Diagn Lab Immunol 4(4):423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng ZZ, Miao J, Zhao M, Tang M, Yeo AE, Yu H et al (2010) Role of heat-shock protein 90 in hepatitis E virus capsid trafficking. J Gen Virol 91(pt 7):1728–1736

    Article  CAS  PubMed  Google Scholar 

  110. Zhou Y, Geng Y, Yang J, Zhao C, Harrison TJ, Wang Y (2014) Hepatitis E virus open reading frame 3 protein interacts with porcine liver-specific plasminogen and alpha2-antiplasmin. J Med Virol 86(3):487–495

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y., Zhao, C., Tian, Y., Xu, N., Wang, Y. (2023). Characteristics and Functions of HEV Proteins. In: Wang, Y. (eds) Hepatitis E Virus. Advances in Experimental Medicine and Biology, vol 1417. Springer, Singapore. https://doi.org/10.1007/978-981-99-1304-6_2

Download citation

Publish with us

Policies and ethics