Skip to main content

Analysis of Membrane Protein Complexes Using the Split-Ubiquitin Membrane Yeast Two-Hybrid System

  • Protocol
  • First Online:
Yeast Functional Genomics and Proteomics

Summary

Recent research has begun to elucidate the global network of cytosolic and membrane protein interactions. The resulting interactome map facilitates numerous biological studies, including those for cell signalling, protein trafficking and protein regulation. Due to the hydrophobic nature of membrane proteins such as tyrosine kinases, G-protein coupled receptors, membrane bound phosphatases and transporters it is notoriously difficult to study their relationship to signaling molecules, the cytoskeleton, or any other interacting partners. Although conventional yeast-two hybrid is a simple and robust technique that is effective in the identification of specific protein-protein interactions, it is limited in its use for membrane proteins. However, the split-ubiquitin membrane based yeast two-hybrid assay (MYTH) has been described as a tool that allows for the identification of membrane protein interactions. In the MYTH system, ubiquitin has been split into two halves, each of which is fused to a protein, at least one of which is membrane bound. Upon interaction of these two proteins, the two halves of ubiquitin are reconstituted and a transcription factor that is fused to the membrane protein is released. The transcription factor then enters the nucleus and activates transcription of reporter genes. Currently, large-scale MYTH screens using cDNA or gDNA libraries are performed to identify and map the binding partners of various membrane proteins. Thus, the MYTH system is proving to be a powerful tool for the elucidation of specific protein-protein interactions, contributing greatly to the mapping of the membrane protein interactome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. 1Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246

    Article  Google Scholar 

  2. 2Uetz, P. and Hughes, R. E. (2000) Systematic and large-scale two-hybrid screens. Curr Opin Microbiol 3, 303–308

    Article  Google Scholar 

  3. 3Stagljar, I., Korostensky, C., Johnsson, N. and te Heesen, S. (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A 95, 5187–5192

    Article  Google Scholar 

  4. 4Fetchko, M., Auerbach, D. and Stagljar, I. (2003) Yeast genetic methods for the detection of membrane protein interactions: potential use in drug discovery. BioDrugs 17, 413–424

    Article  Google Scholar 

  5. 5Paumi, C. M., Menendez, J., Arnoldo, A., Engels, K., Iyer, K. R., Thaminy, S., Georgiev, O., Barral, Y., Michaelis, S. and Stagljar, I. (2007) Mapping protein-protein interactions for the yeast ABC transporter Ycf1p by integrated split-ubiquitin membrane yeast two-hybrid analysis. Mol Cell 26, 15–25

    Article  Google Scholar 

  6. 6Auerbach, D., Galeuchet-Schenk, B., Hottiger, M. O. and Stagljar, I. (2002) Genetic approaches to the identification of interactions between membrane proteins in yeast. J Recept Signal Transduct Res 22, 471–481

    Article  Google Scholar 

  7. 7Thaminy, S., Miller, J. and Stagljar, I. (2004) The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol Biol 261, 297–312

    Google Scholar 

  8. 8Miller, J. and Stagljar, I. (2004) Using the yeast two-hybrid system to identify interacting proteins. Methods Mol Biol 261, 247–262

    Google Scholar 

  9. 9Fetchko, M. and Stagljar, I. (2004) Application of the split-ubiquitin membrane yeast two-hybrid system to investigate membrane protein interactions. Methods 32, 349–362

    Article  Google Scholar 

  10. 10O’Brien, T. D., Butler, A. E., Roche, P. C., Johnson, K. H. and Butler, P. C. (1994) Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis. Diabetes 43, 329–336

    Article  Google Scholar 

  11. 11Iyer, K., Burkle, L., Auerbach, D., Thaminy, S., Dinkel, M., Engels, K. and Stagljar, I. (2005) Utilizing the Split-Ubiquitin Membrane Yeast Two-Hybrid System to Identify Protein-Protein Interactions of Integral Membrane Proteins. Sci. STKE 275, pl3

    Article  Google Scholar 

  12. OriGene Technologies, I. (1998) DupLEX-Aâ„¢ Yeast Two-Hybrid System. Maryland.

    Google Scholar 

  13. 13Russell, S. A. (2001) Molecular Cloning A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  14. Biotech, D. (2006) DUALmembrane kit 3 P01001. Zurich, Switzerland

    Google Scholar 

  15. 15Ge, H., Liu, Z., Church, G. M. and Vidal, M. (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29, 482–486

    Article  Google Scholar 

  16. 16Lee, H. K., Hsu, A. K., Sajdak, J., Qin, J. and Pavlidis, P. (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14, 1085–1094

    Article  Google Scholar 

  17. 17Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25–29

    Google Scholar 

  18. 18Kim, H., Melen, K., Osterberg, M. and von Heijne, G. (2006) A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci U S A 103, 11142–11147

    Article  Google Scholar 

  19. 19Krogh, A., Larsson, B., von Heijne, G. 
and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567–580

    Article  Google Scholar 

  20. 20Miller, J. P., Lo, R. S., Ben-Hur, A., Desmarais, C., Stagljar, I., Noble, W. S. and Fields, S. (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 102, 12123–12128

    Article  Google Scholar 

  21. 21Jansen, R., Greenbaum, D. and Gerstein, M. (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res 12, 37–46

    Article  Google Scholar 

  22. 22Drawid, A., Jansen, R. and Gerstein, M. (2000) Genome-wide analysis relating expression level with protein subcellular localization. Trends Genet 16, 426–430

    Article  Google Scholar 

  23. Agatep, R., Kirkpatrick, R. D., Parchaliuk, D. L., Woods, R. A. and Gietz, R. D. (1998)Transformation of Saccharomyces cerevisiae by the lithium acetate/ single-stranded carrier DNA/ polyethylene glycol (LiAc/ ss-DNA/ PEG) protocol.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Stagljar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kittanakom*, S. et al. (2009). Analysis of Membrane Protein Complexes Using the Split-Ubiquitin Membrane Yeast Two-Hybrid System. In: Stagljar, I. (eds) Yeast Functional Genomics and Proteomics. Methods in Molecular Biology, vol 548. Humana Press. https://doi.org/10.1007/978-1-59745-540-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-540-4_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-71-8

  • Online ISBN: 978-1-59745-540-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics