Skip to main content

Exploring the Regulation of Proteasome Function by Subunit Phosphorylation

  • Protocol
  • First Online:
The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

Rates of degradation by the ubiquitin proteasome system depend not only on rates of ubiquitination, but also on the level of proteasome activity which can be regulated through phosphorylation of proteasome subunits. Many protein kinases have been proposed to influence proteasomal activity. However, for only two is there strong evidence that phosphorylation of a specific 26S subunit enhances the proteasome’s capacity to degrade ubiquitinated proteins and promotes protein breakdown in cells: (1) protein kinase A (PKA), which after a rise in cAMP phosphorylates the 19S subunit Rpn6, and (2) dual tyrosine receptor kinase 2 (DYRK2), which during S through M phases of the cell cycle phosphorylates the 19S ATPase subunit Rpt3. In this chapter, we review and discuss the different methods used to assess the impact of phosphorylation by these two kinases on proteasomal activity and intracellular protein degradation. In addition, we present one method to determine if phosphorylation is responsible for an observed increase in proteasomal activity and another to evaluate by Phos-tag gel electrophoresis whether a specific proteasome subunit is modified by phosphorylation. The methods reviewed and presented here should be useful in clarifying the roles of other kinases and other posttranslational modifications of proteasome subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. VerPlank JJS, Goldberg AL (2017) Regulating protein breakdown through proteasome phosphorylation. Biochem J 474(19):3355–3371. https://doi.org/10.1042/bcj20160809

    Article  CAS  PubMed  Google Scholar 

  2. Guo X, Huang X, Chen MJ (2017) Reversible phosphorylation of the 26S proteasome. Protein Cell 8(4):255–272. https://doi.org/10.1007/s13238-017-0382-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lokireddy S, Kukushkin NV, Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci U S A 112(52):E7176–E7185. https://doi.org/10.1073/pnas.1522332112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, Dixon JE (2016) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18(2):202–212. https://doi.org/10.1038/ncb3289

    Article  CAS  PubMed  Google Scholar 

  5. Ranek MJ, Terpstra EJ, Li J, Kass DA, Wang X (2013) Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128(4):365–376. https://doi.org/10.1161/circulationaha.113.001971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ranek MJ, Kost CK Jr, Hu C, Martin DS, Wang X (2014) Muscarinic 2 receptors modulate cardiac proteasome function in a protein kinase G-dependent manner. J Mol Cell Cardiol 69:43–51. https://doi.org/10.1016/j.yjmcc.2014.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284(39):26655–26665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Um JW, Im E, Park J, Oh Y, Min B, Lee HJ, Yoon JB, Chung KC (2010) ASK1 negatively regulates the 26 S proteasome. J Biol Chem 285(47):36434–36446. https://doi.org/10.1074/jbc.M110.133777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asai M, Tsukamoto O, Minamino T, Asanuma H, Fujita M, Asano Y, Takahama H, Sasaki H, Higo S, Asakura M, Takashima S, Hori M, Kitakaze M (2009) PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. J Mol Cell Cardiol 46(4):452–462. https://doi.org/10.1016/j.yjmcc.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  10. Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE (2007) Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 282(31):22460–22471. https://doi.org/10.1074/jbc.M702439200

    Article  CAS  PubMed  Google Scholar 

  11. Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, Goldberg AL, Duff KE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22(1):46–53. https://doi.org/10.1038/nm.4011

    Article  CAS  PubMed  Google Scholar 

  12. Lokireddy S, VerPlank JJS, Zhao J, Davogusotto G, Parker B, James D, Richter E, Taegetmeyer H, Goldberg AL. Hormones, exercise, and fasting activate 26S proteasome function via cAMP-PKA pathway. Manuscript in revision

    Google Scholar 

  13. Besche HC, Goldberg AL (2012) Affinity purification of mammalian 26S proteasomes using an ubiquitin-like domain. Methods Mol Biol 832:423–432. https://doi.org/10.1007/978-1-61779-474-2_29

    Article  CAS  PubMed  Google Scholar 

  14. VerPlank JJS, Lokireddy S, Feltri ML, Goldberg AL, Wrabetz L (2018) Impairment of protein degradation and proteasome function in hereditary neuropathies. Glia 66(2):379–395. https://doi.org/10.1002/glia.23251

    Article  PubMed  Google Scholar 

  15. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4(10):1513–1521. https://doi.org/10.1038/nprot.2009.154

    Article  CAS  PubMed  Google Scholar 

  16. Lee SH, Park Y, Yoon SK, Yoon JB (2010) Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. J Biol Chem 285(53):41280–41289. https://doi.org/10.1074/jbc.M110.182188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K, Rodenko B, Zaal EA, van de Kooij B, Laufer S, Heck AJR, Borst J, Scheper W, Berkers CR, Ovaa H (2017) Proteasome activation by small molecules. Cell Chem Biol 24(6):725–736.e7. https://doi.org/10.1016/j.chembiol.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  18. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169(5):792–806. https://doi.org/10.1016/j.cell.2017.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Zhai B, Gygi SP, Goldberg AL (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci U S A 112(52):15790–15797. https://doi.org/10.1073/pnas.1521919112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. https://doi.org/10.1016/j.cmet.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  21. Filipcik P, Curry JR, Mace PD (2017) When worlds collide-mechanisms at the Interface between phosphorylation and ubiquitination. J Mol Biol 429(8):1097–1113. https://doi.org/10.1016/j.jmb.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  22. Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115(6):715–725

    Article  CAS  PubMed  Google Scholar 

  23. Cho-Park PF, Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153(3):614–627. https://doi.org/10.1016/j.cell.2013.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Besche HC, Sha Z, Kukushkin NV, Peth A, Hock EM, Kim W, Gygi S, Gutierrez JA, Liao H, Dick L, Goldberg AL (2014) Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 33(10):1159–1176. https://doi.org/10.1002/embj.201386906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marshall RS, McLoughlin F, Vierstra RD (2016) Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep 16(6):1717–1732. https://doi.org/10.1016/j.celrep.2016.07.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The methods described here were developed through research support to our laboratory from the NIH-NIGMS (R01 GM51923), Cure Alzheimer’s Fund, Muscular Dystrophy Association (MDA-419143), and Project A.L.S (2015-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred L. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

VerPlank, J.J.S., Goldberg, A.L. (2018). Exploring the Regulation of Proteasome Function by Subunit Phosphorylation. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics