Abstract
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang JC, Peck LJ, Becherer K (1983) DNA supercoiling and its effects on DNA structure and function. In: Cold Spring Harbor symposia on quantitative biology, vol 47. Cold Spring Harbor Laboratory Press, New York, pp 85–91
Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70(1):369–413
Lavelle C (2008) DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation. Nat Struct Mol Biol 15(2):123–125
Lavelle C (2014) Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Curr Opin Genet Dev 25:74–84
Travers A, Muskhelishvili G (2005a) DNA supercoiling—a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 3(2):157–169
Edelstein AD (2009) The effect of torque on RNA polymerase. University of California, Berkeley
Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Acc Chem Res 34(6):412–420
Bécavin C, Barbi M, Victor JM, Lesne A (2010) Transcription within condensed chromatin: steric hindrance facilitates elongation. Biophys J 98(5):824–833
Lesne A, Bécavin C, Victor JM (2012) The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing. Phys Biol 9(1):013001
Svejstrup JQ (ed) (2013) Special issue on RNA polymerase II transcript elongation. Biochim Biophys Acta 1829:1–186
Vicsek T (ed) (2001) Fluctuations and scaling in biology. Oxford University Press, New York
Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor JM, Robert MC, Capozi S, Cheia R, Bäcker V, Mateos-Langerak J, Darzacq X, Zimmer C, Basyuk E, Bertrand E (2016) A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun 7:12248
White JH, Bauer WR (1986) Calculation of the twist and the writhe for representative models of DNA. J Mol Biol 189(2):329–341
Kouzine F, Gupta A, Baranello L, Wojtowicz D, Ben-Aissa K, Liu J, Przytycka TM, Levens D (2013) Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 20(3):396–403
Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56(4):858–870
Travers A, Muskhelishvili G (2007) A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep 8(2):147–151
Lim CJ, Kenney LJ, Yan J (2014) Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties. Nucleic Acids Res 42(13):8369–8378
Travers A, Schneider R, Muskhelishvili G (2001) DNA supercoiling and transcription in Escherichia coli: the FIS connection. Biochimie 83(2):213–217
Van Holde KE (2012) Chromatin. Springer, New York
Worcel A, Strogatz S, Riley D (1981) Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci U S A 78(3):1461–1465
Barbi M, Mozziconacci J, Victor JM, Wong H, Lavelle C (2012) On the topology of chromatin fibres. Interface Focus 2(5):546–554
Travers A, Muskhelishvili G (2005b) Bacterial chromatin. Curr Opin Genet Dev 15(5):507–514
Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A 73(11):3872–3876
Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR (2004) Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5:R87
Nadal M (2007) Reverse gyrase: an insight into the role of DNA-topoisomerases. Biochimie 89(4):447–455
Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP, Cockcroft SL, Bradley M, Ylstra B, Gilbert N (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20(3):387–395
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation center. Nature 485(7398):381–385
Ea V, Baudement MO, Lesne A, Forné T (2015) Contribution of topological domains and loop formation to 3D chromatin organization. Genes 6(3):734–750
Padinhateeri R, Marko JF (2011) Nucleosome positioning in a model of active chromatin remodeling enzymes. Proc Natl Acad Sci U S A 108(19):7799–7803
Cortini R, Barbi M, Caré BR, Lavelle C, Lesne A, Mozziconacci J, Victor JM (2016) The physics of epigenetics. Rev Modern Phys 88:025002
Aragon L, Martinez-Perez E, Merkenschlager M (2013) Condensin, cohesin and the control of chromatin states. Curr Opin Genet Dev 23(2):204–211
Hirano T (2014) Condensins and the evolution of torsion-mediated genome organization. Trends Cell Biol 24(12):727–733
Terweij M, van Leeuwen F (2013) Histone exchange: sculpting the epigenome. Front Life Sci 7(1–2):63–79
Lavelle C (2009) Forces and torques in the nucleus: chromatin under mechanical constraints. Biochem Cell Biol 87(1):307–322
Rovinskiy N, Agbleke AA, Chesnokova O, Pang Z, Higgins NP (2012) Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 8(8):e1002845
Matsumoto K, Hirose S (2004) Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of Drosophila. J Cell Sci 117(17):3797–3805
Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84(20):7024–7027
Chong S, Chen C, Ge H, Xie XS (2014) Mechanism of transcriptional bursting in bacteria. Cell 158(2):314–326
Bancaud A, Wagner G, e Silva NC, Lavelle C, Wong H, Mozziconacci J, Barbi M, Sivolob A, Le Cam E, Mouawad L, Viovy JL, Victor JM, Prunell A (2007) Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol Cell 27(1):135–147
Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134(1):74–84
Jeong KS, Ahn J, Khodursky AB (2004) Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome Biol 5(11):R86
Blot N, Mavathur R, Geertz M, Travers A, Muskhelishvili G (2006) Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep 7(7):710–715
Sarkar A, Marko JF (2001) Removal of DNA-bound proteins by DNA twisting. Phys Rev E 64(6):061909
Bustamante C (2008) In singulo biochemistry: when less is more. Annu Rev Biochem 77:45–50
Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465
Larson MH, Landick R, Block SM (2011) Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 41(3):249–262
Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171
Adelman K, La Porta A, Santangelo TJ, Lis JT, Roberts JW, Wang MD (2002) Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc Natl Acad Sci U S A 99(21):13538–13543
Zhou J, Schweikhard V, Block SM (2013) Single-molecule studies of RNAPII elongation. Biochim Biophys Acta 1829(1):29–38
Herbert KM, Greenleaf WJ, Block SM (2008) Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77:149–176
Thomen P, Lopez PJ, Bockelmann U, Guillerez J, Dreyfus M, Heslot F (2008) T7 RNA polymerase studied by force measurements varying cofactor concentration. Biophys J 95(5):2423–2433
Wuite GJ, Smith SB, Young M, Keller D, Bustamante C (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404(6773):103–106
Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL (2013) Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50(2):212–222
Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907
Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340(6140):1580–1583
Dangkulwanich M, Ishibashi T, Bintu L, Bustamante C (2014) Molecular mechanisms of transcription through single-molecule experiments. Chem Rev 114(6):3203–3223
Harada Y, Ohara O, Takatsuki A, Itoh H, Shimamoto N, Kinosita K (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409(6816):113–115
Deufel C, Forth S, Simmons CR, Dejgosha S, Wang MD (2007) Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods 4(3):223–225
Miller OJ, McKnight S (1979) Post-replicative nonribosomal transcription units in D. melanogaster embryos. Cell 17(3):551–563
Wong H, Winn PJ, Mozziconacci J (2009) A molecular model of chromatin organisation and transcription: how a multi-RNA polymerase II machine transcribes and remodels the β-globin locus during development. BioEssays 31:1357–1366
Epshtein V, Toulmé F, Rahmouni AR, Borukhov S, Nudler E (2003) Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J 22(18):4719–4727
Wagner P (2011) A time-discrete harmonic oscillator model of human car-following. Eur Phys J B 84(4):713–718
Albert B, Léger-Silvestre I, Normand C, Ostermaier MK, Pérez-Fernández J, Panov KI, Zomerdijk JCBM, Schultz P, Gadal O (2011) RNA polymerase I–specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol 192:277–293
Berger F, Keller C, Klumpp S, Lipowsky R (2012) Distinct transport regimes for two elastically coupled molecular motors. Phys Rev Lett 108(20):208101
Kohler F, Rohrbach A (2015) Synchronization of elastically coupled processive molecular motors and regulation of cargo transport. Phys Rev E 91(1):012701
MacDonald CT, Gibbs JH, Pipkin AC (1968) Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1):1–25
Acknowledgments
We acknowledge our team “Multiscale Modeling of Living Matter” at LPTMC, Thierry Forné, Christophe Lavelle, and Marc Nadal for stimulating discussions. This work was funded by the French Institut National du Cancer, grant INCa_5960, and the French Agence Nationale de la Recherche, grant ANR-13-BSV5-0010-03.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Lesne, A., Victor, JM., Bertrand, E., Basyuk, E., Barbi, M. (2018). The Role of Supercoiling in the Motor Activity of RNA Polymerases. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_11
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8556-2_11
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8554-8
Online ISBN: 978-1-4939-8556-2
eBook Packages: Springer Protocols