Skip to main content

The Role of Supercoiling in the Motor Activity of RNA Polymerases

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang JC, Peck LJ, Becherer K (1983) DNA supercoiling and its effects on DNA structure and function. In: Cold Spring Harbor symposia on quantitative biology, vol 47. Cold Spring Harbor Laboratory Press, New York, pp 85–91

    Google Scholar 

  2. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70(1):369–413

    Article  CAS  PubMed  Google Scholar 

  3. Lavelle C (2008) DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation. Nat Struct Mol Biol 15(2):123–125

    Article  CAS  PubMed  Google Scholar 

  4. Lavelle C (2014) Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Curr Opin Genet Dev 25:74–84

    Article  CAS  PubMed  Google Scholar 

  5. Travers A, Muskhelishvili G (2005a) DNA supercoiling—a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 3(2):157–169

    Article  CAS  PubMed  Google Scholar 

  6. Edelstein AD (2009) The effect of torque on RNA polymerase. University of California, Berkeley

    Google Scholar 

  7. Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Acc Chem Res 34(6):412–420

    Article  CAS  PubMed  Google Scholar 

  8. Bécavin C, Barbi M, Victor JM, Lesne A (2010) Transcription within condensed chromatin: steric hindrance facilitates elongation. Biophys J 98(5):824–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lesne A, Bécavin C, Victor JM (2012) The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing. Phys Biol 9(1):013001

    Article  CAS  PubMed  Google Scholar 

  10. Svejstrup JQ (ed) (2013) Special issue on RNA polymerase II transcript elongation. Biochim Biophys Acta 1829:1–186

    Google Scholar 

  11. Vicsek T (ed) (2001) Fluctuations and scaling in biology. Oxford University Press, New York

    Google Scholar 

  12. Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor JM, Robert MC, Capozi S, Cheia R, Bäcker V, Mateos-Langerak J, Darzacq X, Zimmer C, Basyuk E, Bertrand E (2016) A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun 7:12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White JH, Bauer WR (1986) Calculation of the twist and the writhe for representative models of DNA. J Mol Biol 189(2):329–341

    Article  CAS  PubMed  Google Scholar 

  14. Kouzine F, Gupta A, Baranello L, Wojtowicz D, Ben-Aissa K, Liu J, Przytycka TM, Levens D (2013) Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 20(3):396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56(4):858–870

    Article  CAS  PubMed  Google Scholar 

  16. Travers A, Muskhelishvili G (2007) A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep 8(2):147–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim CJ, Kenney LJ, Yan J (2014) Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties. Nucleic Acids Res 42(13):8369–8378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Travers A, Schneider R, Muskhelishvili G (2001) DNA supercoiling and transcription in Escherichia coli: the FIS connection. Biochimie 83(2):213–217

    Article  CAS  PubMed  Google Scholar 

  19. Van Holde KE (2012) Chromatin. Springer, New York

    Google Scholar 

  20. Worcel A, Strogatz S, Riley D (1981) Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci U S A 78(3):1461–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barbi M, Mozziconacci J, Victor JM, Wong H, Lavelle C (2012) On the topology of chromatin fibres. Interface Focus 2(5):546–554

    Article  PubMed  PubMed Central  Google Scholar 

  22. Travers A, Muskhelishvili G (2005b) Bacterial chromatin. Curr Opin Genet Dev 15(5):507–514

    Article  CAS  PubMed  Google Scholar 

  23. Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A 73(11):3872–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR (2004) Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5:R87

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nadal M (2007) Reverse gyrase: an insight into the role of DNA-topoisomerases. Biochimie 89(4):447–455

    Article  CAS  PubMed  Google Scholar 

  26. Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP, Cockcroft SL, Bradley M, Ylstra B, Gilbert N (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20(3):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation center. Nature 485(7398):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ea V, Baudement MO, Lesne A, Forné T (2015) Contribution of topological domains and loop formation to 3D chromatin organization. Genes 6(3):734–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Padinhateeri R, Marko JF (2011) Nucleosome positioning in a model of active chromatin remodeling enzymes. Proc Natl Acad Sci U S A 108(19):7799–7803

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cortini R, Barbi M, Caré BR, Lavelle C, Lesne A, Mozziconacci J, Victor JM (2016) The physics of epigenetics. Rev Modern Phys 88:025002

    Article  Google Scholar 

  32. Aragon L, Martinez-Perez E, Merkenschlager M (2013) Condensin, cohesin and the control of chromatin states. Curr Opin Genet Dev 23(2):204–211

    Article  CAS  PubMed  Google Scholar 

  33. Hirano T (2014) Condensins and the evolution of torsion-mediated genome organization. Trends Cell Biol 24(12):727–733

    Article  CAS  PubMed  Google Scholar 

  34. Terweij M, van Leeuwen F (2013) Histone exchange: sculpting the epigenome. Front Life Sci 7(1–2):63–79

    Article  CAS  Google Scholar 

  35. Lavelle C (2009) Forces and torques in the nucleus: chromatin under mechanical constraints. Biochem Cell Biol 87(1):307–322

    Article  CAS  PubMed  Google Scholar 

  36. Rovinskiy N, Agbleke AA, Chesnokova O, Pang Z, Higgins NP (2012) Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 8(8):e1002845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumoto K, Hirose S (2004) Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of Drosophila. J Cell Sci 117(17):3797–3805

    Article  CAS  PubMed  Google Scholar 

  38. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84(20):7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chong S, Chen C, Ge H, Xie XS (2014) Mechanism of transcriptional bursting in bacteria. Cell 158(2):314–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bancaud A, Wagner G, e Silva NC, Lavelle C, Wong H, Mozziconacci J, Barbi M, Sivolob A, Le Cam E, Mouawad L, Viovy JL, Victor JM, Prunell A (2007) Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol Cell 27(1):135–147

    Article  CAS  PubMed  Google Scholar 

  41. Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134(1):74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeong KS, Ahn J, Khodursky AB (2004) Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome Biol 5(11):R86

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blot N, Mavathur R, Geertz M, Travers A, Muskhelishvili G (2006) Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep 7(7):710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarkar A, Marko JF (2001) Removal of DNA-bound proteins by DNA twisting. Phys Rev E 64(6):061909

    Article  CAS  Google Scholar 

  45. Bustamante C (2008) In singulo biochemistry: when less is more. Annu Rev Biochem 77:45–50

    Article  CAS  PubMed  Google Scholar 

  46. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larson MH, Landick R, Block SM (2011) Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 41(3):249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adelman K, La Porta A, Santangelo TJ, Lis JT, Roberts JW, Wang MD (2002) Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc Natl Acad Sci U S A 99(21):13538–13543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou J, Schweikhard V, Block SM (2013) Single-molecule studies of RNAPII elongation. Biochim Biophys Acta 1829(1):29–38

    Article  CAS  PubMed  Google Scholar 

  51. Herbert KM, Greenleaf WJ, Block SM (2008) Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77:149–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomen P, Lopez PJ, Bockelmann U, Guillerez J, Dreyfus M, Heslot F (2008) T7 RNA polymerase studied by force measurements varying cofactor concentration. Biophys J 95(5):2423–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wuite GJ, Smith SB, Young M, Keller D, Bustamante C (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404(6773):103–106

    Article  CAS  PubMed  Google Scholar 

  54. Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL (2013) Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50(2):212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907

    Article  CAS  PubMed  Google Scholar 

  56. Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340(6140):1580–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dangkulwanich M, Ishibashi T, Bintu L, Bustamante C (2014) Molecular mechanisms of transcription through single-molecule experiments. Chem Rev 114(6):3203–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harada Y, Ohara O, Takatsuki A, Itoh H, Shimamoto N, Kinosita K (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409(6816):113–115

    Article  CAS  PubMed  Google Scholar 

  59. Deufel C, Forth S, Simmons CR, Dejgosha S, Wang MD (2007) Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods 4(3):223–225

    Article  CAS  PubMed  Google Scholar 

  60. Miller OJ, McKnight S (1979) Post-replicative nonribosomal transcription units in D. melanogaster embryos. Cell 17(3):551–563

    Article  PubMed  Google Scholar 

  61. Wong H, Winn PJ, Mozziconacci J (2009) A molecular model of chromatin organisation and transcription: how a multi-RNA polymerase II machine transcribes and remodels the β-globin locus during development. BioEssays 31:1357–1366

    Article  CAS  PubMed  Google Scholar 

  62. Epshtein V, Toulmé F, Rahmouni AR, Borukhov S, Nudler E (2003) Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J 22(18):4719–4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wagner P (2011) A time-discrete harmonic oscillator model of human car-following. Eur Phys J B 84(4):713–718

    Article  CAS  Google Scholar 

  64. Albert B, Léger-Silvestre I, Normand C, Ostermaier MK, Pérez-Fernández J, Panov KI, Zomerdijk JCBM, Schultz P, Gadal O (2011) RNA polymerase I–specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol 192:277–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Berger F, Keller C, Klumpp S, Lipowsky R (2012) Distinct transport regimes for two elastically coupled molecular motors. Phys Rev Lett 108(20):208101

    Article  CAS  PubMed  Google Scholar 

  66. Kohler F, Rohrbach A (2015) Synchronization of elastically coupled processive molecular motors and regulation of cargo transport. Phys Rev E 91(1):012701

    Article  CAS  Google Scholar 

  67. MacDonald CT, Gibbs JH, Pipkin AC (1968) Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1):1–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge our team “Multiscale Modeling of Living Matter” at LPTMC, Thierry Forné, Christophe Lavelle, and Marc Nadal for stimulating discussions. This work was funded by the French Institut National du Cancer, grant INCa_5960, and the French Agence Nationale de la Recherche, grant ANR-13-BSV5-0010-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Victor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lesne, A., Victor, JM., Bertrand, E., Basyuk, E., Barbi, M. (2018). The Role of Supercoiling in the Motor Activity of RNA Polymerases. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics