Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goodsell DS, Zardecki C, Di Costmazo L et al (2020) RCSB protein data Bank: enabling biomedical research and drug discovery. Protein Sci 29:52–65
Consortium PDB (2019) Protein data bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 47:D520–D528
Berman HM, Burley SK, Kleywegt GJ et al (2016) The archiving and dissemination of biological structure data. Curr Opin Struct Biol 40:17–22
Schlichting I (2015) Serial femtosecond crystallography: the first five years. IUCrJ 2(Pt 2):246–255
Fromme P (2015) XFELs open a new era in structural chemical biology. Nat Chem Biol 11:895–899
Chapman HN (2019) X-ray free-electron lasers for the structure and dynamics of macromolecules. Annu Rev Biochem 88:35–58
Spence JCH (2017) XFELs for structure and dynamics in biology. IUCrJ 4:322–339
Breaker RR (2018) Riboswitches and translation control. Cold Spring Harb Perspect Biol 10(11)
Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4(2):a003566
Bhandari YR, Fan L, Fang X et al (2017) Topological structure determination of RNA using small-angle X-ray scattering. J Mol Biol 429:3635–3649
Stagno JR, Liu Y, Bhandari YR et al (2017) Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541:242–246
Stagno JR, Bhandari YR, Conrad CE et al (2017) Real-time crystallographic studies of the adenine riboswitch using an X-ray free-electron laser. FEBS J 284:3374–3380
Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193
Henderson R (1990) Cryoprotection of protein crystals against radiation-damage in electron and X-ray-diffraction. Proc R Soc B Biol Sci 241:6–8
de la Mora E, Coquelle N, Bury CS et al (2020) Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures. Proc Natl Acad Sci U S A 117:4142–4151
Bury CS, Brookes-Bartlett C, Walsh SP et al (2018) Estimate your dose: RADDOSE-3D. Protein Sci 27:217–228
Garman EF, Weik M (2017) Radiation damage in macromolecular crystallography. Methods Mol Biol 1607:467–489
Zeldin OB, Brockhauser S, Brembridge J et al (2013) Predicting the X-ray lifetime of protein crystals. Proc Natl Acad Sci U S A 110:20551–20556
Holton JM, Frankel KA (2010) The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D Biol Crystallogr 66:393–408
Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142
Li D, Caffrey M (2020) Structure and functional characterization of membrane integral proteins in the lipid cubic phase. J Mol Biol 432:5104–5123
Zhang Q, Cherezov V (2019) Chemical tools for membrane protein structural biology. Curr Opin Struct Biol 58:278–285
Mishin A, Gusach A, Luginina A et al (2019) An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin Drug Discovery 14:933–945
Neutze R, Branden G, Schertler GF (2015) Membrane protein structural biology using X-ray free electron lasers. Curr Opin Struct Biol 33:115–125
Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309
Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18
Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364
Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77
Phillips GN (1995) XRayView: a teaching aid for X-ray crystallography. Biophys J 69:1281–1283
Phillips GN (2011) XRayView, a virtual X-ray crystallography laboratory http://www.phillipslab.org/downloads, Access Data 14 Sep 2020
Sauter NK, Kern J, Yano J, Holton JM (2020) Towards the spatial resolution of metalloprotein charge states by detailed modeling of XFEL crystallographic diffraction. Acta Crystallogr D Struct Biol 76:176–192
Holton JM, Frankel KA (2020) SnanoBragg, a short program for calculation of absolute scattering from molecules and small crystals https://bl831.als.lbl.gov/~jamesh/nanoBragg/, Access Data 14 Sep 2020
Zhao FZ, Zhang B, Yan E-K et al (2019) A guide to sample delivery systems for serial crystallography. FEBS J 286:4402–4417
Davy B, Axford D, Beale JH et al (2019) Reducing sample consumption for serial crystallography using acoustic drop ejection. J Synchrotron Radiat 26:1820–1825
Beale JH, Bolton R, Marshall SA et al (2019) Successful sample preparation for serial crystallography experiments. J Appl Crystallogr 52:1385–1396
Coe J, Ros A (2018) Small is beautiful: growth and detection of nanocrystals. In: Boutet S, Fromme P, Hunter M (eds) X-ray free electron lasers. Springer, Cham, pp 59–85
Kupitz C, Grotjohann I, Conrad CE et al (2014) Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Philos Trans R Soc Lond Ser B Biol Sci 369:20130316
Stan CA, Milathianaki D, Laksmono H et al (2016) Liquid explosions induced by X-ray laser pulses. Nat Phys 12:966–971
Kim D, Echelmeir A, Villarreal J et al (2019) Electric triggering for enhanced control of droplet generation. Anal Chem 91:9792–9799
Knoska J, Adriano L, Awel S et al (2020) Ultracompact 3D microfluidics for time-resolved structural biology. Nat Commun 11:657
Oberthuer D, Knoška J, Wiedorn MO et al (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628
Nogly P, Panneels V, Nelson G et al (2016) Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nat Commun 7:12314
DePonte DP, Weierstall U, Schmidt K et al (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41:195505
Kovacsova G, Grünbein ML, Kloos M et al (2017) Viscous hydrophilic injection matrices for serial crystallography. IUCrJ 4:400–410
Conrad CE, Basu S, James D et al (2015) A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2:421–430
Sierra RG, Gati C, Laksmono H et al (2016) Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nat Methods 13:59–62
Dao EH, Poitvin F, Sierra RG et al (2018) Structure of the 30S ribosomal decoding complex at ambient temperature. RNA 24:1667–1676
Tetreau G, Banneville A-S, Andreeva EA et al (2020) Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nat Commun 11:1153
Kern J, Chatterjee R, Young ID et al (2018) Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563:421–425
Orville AM (2017) Acoustic methods for on-demand sample injection into XFEL beams. In: X-ray free electron lasers: applications in materials, chemistry and biology. The Royal Society of Chemistry, pp 348–364
Fuller FD, Gul S, Chatterjee R et al (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443–449
Roessler CG, Agarwal R, Allaire M et al (2016) Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24:631–640
Soares AS, Engel MA, Stearns R et al (2011) Acoustically mounted microcrystals yield high-resolution X-ray structures. Biochemistry 50:4399–4401
Wu P, Noland C, Ultsch M et al (2016) Developments in the implementation of acoustic droplet ejection for protein crystallography. J Lab Autom 21:97–106
Mafune F, Miyajima K, Tono K et al (2016) Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallogr D Struct Biol 72:520–523
Hadimioglu B, Stearns R, Ellson R (2016) Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J Lab Autom 21:4–18
Hunter MS, Segelke B, Messerschimdt M et al (2014) Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci Rep 4:6026
Doak RB, Kovacs GN, Gorel A et al (2018) Crystallography on a chip—without the chip: sheet-on-sheet sandwich. Acta Crystallogr Sect D Struct Biol 74:1000–1007
Oghbaey S, Sarracini A, Ginn HM et al (2016) Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. Acta Crystallogr D Struct Biol 72:944–955
Sherrell DA, Foster AJ, Hudson L et al (2015) A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources. J Synchrotron Radiat 22:1372–1378
Mueller C, Marx A, Epp SW et al (2015) Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Struct Dyn 2:054302
Aller P, San chez-Weatherby J, Foadi J et al (2015) Application of in situ diffraction in high-throughput structure determination platforms. Methods Mol Biol 1261:233–253
Lieske J, Cerv M, Kreida S et al (2019) On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. IUCrJ 6:714–728
Roedig P, Ginn HM, Pakendorf T et al (2017) High-speed fixed-target serial virus crystallography. Nat Methods 14:805–810
Roedig P, Duman R, Weatherby-Sanchez J et al (2016) Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J Appl Crystallogr 49:968–975
Roedig P, Vartiainen I, Duman R et al (2015) A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci Rep 5:10451
Shelby ML, Gilbile D, Grant TD et al (2020) A fixed-target platform for serial femtosecond crystallography in a hydrated environment. IUCrJ 7:30–41
Chreifi G, Baxter EL, Doukov T et al (2016) Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer. Proc Natl Acad Sci U S A 113:1226–1231
Baxter EL, Aguila L, Alonso-Mori R et al (2016) High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Struct Biol 72:2–11
Cohen AE, Soltis M, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 11:17122–17127
Zander U, Bourenkov G, Popov A et al (2015) MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallogr D Biol Crystallogr 71:2328–2343
Orville AM (2020) Recent results in time resolved serial femtosecond crystallography at XFELs. Curr Opin Struct Biol 65:193–208
Sauter NK, Rose JP, Bhat TN (2020) Transactions from the 69th Annual Meeting of the American Crystallographic Association: data best practices-current state and future needs. Struct Dyn 7:021301
Bernstein HJ, Andrews LC, Diaz J et al (2020) Best practices for high data-rate macromolecular crystallography (HDRMX). Struct Dyn 7:014302
Leonarski F, Mozzanica A, Brückner M et al (2020) JUNGFRAU detector for brighter x-ray sources: solutions for IT and data science challenges in macromolecular crystallography. Struct Dyn 7:014305
Meisburger SP, Case DA, Ando N (2020) Diffuse X-ray scattering from correlated motions in a protein crystal. Nat Commun 11:1271
Forster A, Schulze-Briese C (2019) A shared vision for macromolecular crystallography over the next five years. Struct Dyn 6:064302
Helliwell JR, McMahon B, Guss JM et al (2017) The science is in the data. IUCrJ 4:714–722
Grimes JM, Hall DR, Ashton AW et al (2018) Where is crystallography going? Acta Crystallogr D Struct Biol 74:152–166
Martiel I, Muller-Werkmeister HM, Cohen AE (2019) Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr D Struct Biol 75:160–177
Meents A, Wiedorn MO, Srajer V et al (2017) Pink-beam serial crystallography. Nat Commun 8:1281
Mehrabi P, Schultz EC, Agthe M et al (2019) Liquid application method for time-resolved analyses by serial synchrotron crystallography. Nat Methods 16:979–982
Martin-Garcia JM, Conrad CE, Nelson G et al (2017) Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ 4:439–454
Martin-Garcia JM, Zhu L, Mendez D et al (2019) High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source. IUCrJ 6:412–425
Chenevier D, Joly A (2018) ESRF: inside the extremely brilliant source upgrade. Synchrotron Radiat News 31:32–35
Chapon LC, Boscaro-Clarke I, Dent AJ, et al (2019) Diamond-II — Conceptual Design Report. Diamond Light Source Ltd.: Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
Boscaro-Clarke I, Evans G, Rambo R et al (2019) Diamond-II—Advancing Science. 2019, Diamond Light Source Ltd: Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
Grünbein ML, Stricker M, Kovacs GN et al (2020) Illumination guidelines for ultrafast pump-probe experiments by serial femtosecond crystallography. Nat Methods 17:681–684
Johansson LC, Arnlund D, Katona G et al (2013) Structure of a photosynthetic reaction Centre determined by serial femtosecond crystallography. Nat Commun 4:2911
Wiedorn MO, Awel S, Morgan AJ et al (2018) Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ 5:574–584
Echelmeier A, Kim D, Villareal JC et al (2019) 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J Appl Crystallogr 52:997–1008
Gisriel C, Coe J, Letrun R et al (2019) Membrane protein megahertz crystallography at the European XFEL. Nat Commun 10:5021
Aquila A et al (2012) Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt Express 20:2706–2716
Suga M, Hunter MS, Doak RB et al (2020) Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim Biophys Acta Gen Subj 1864:129466
Suga M, Akita F, Yamashita K et al (2019) An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366:334–338
Suga M, Akita F, Hirata K et al (2015) Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature 517:99–103
Young ID, Ibrahim M, Chatterjee R et al (2016) Structure of photosystem II and substrate binding at room temperature. Nature 540:453–457
Kern J, Yachandra VK, Yano J (2015) Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers. Curr Opin Struct Biol 34:87–98
Kern J, Tran R, Alonos-Mori R et al (2014) Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat Commun 5:4371
Kern J, Alonso-Mori R, Tran R et al (2013) Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340:491–495
Alonso-Mori R, Kern J, Gildea RJ et al (2012) Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proc Natl Acad Sci U S A 109:19103–19107
Fransson T, Chatterjee R, Fuller FD et al (2018) X-ray emission spectroscopy as an in situ diagnostic tool for X-ray crystallography of metalloproteins using an X-ray free-electron laser. Biochemistry 57:4629–4637
Ibrahim M, Fransson T, Chatterjee R et al (2020) Untangling the sequence of events during the S2 --> S3 transition in photosystem II and implications for the water oxidation mechanism. Proc Natl Acad Sci U S A 117:12624–12635
Kupitz C, Bsu S, Grotjohann I et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265
Ayyer K, Yefanov OM, Oberthür D et al (2016) Macromolecular diffractive imaging using imperfect crystals. Nature 530:202–206
Suga M, Akita F, Sugahara M et al (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–135
Tenboer J, Basu S, Zatsepin N et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246
Pande K, Hutchinson CD, Groenhof G et al (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–729
Pandey S, Bean R, et a ST (2019) Time-resolved serial femtosecond crystallography at the European XFEL. Nat Methods 17:73–78
Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567
Zhou XE, Goa X, Barty A et al (2016) X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Sci Data 3:160021
Nakane T, Hanashima S, Suzuki M et al (2016) Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent. Proc Natl Acad Sci U S A 113:13039–13044
Nango E, Royant A, Kubo M et al (2016) A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552–1557
Nogly P, Weinert T, James D et al (2018) Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:145
Wickstrand C, Nogly P, Nango E et al (2019) Bacteriorhodopsin: structural insights revealed using X-ray lasers and synchrotron radiation. Annu Rev Biochem 88:59–83
Weinert T, Skopintsev P, James D et al (2019) Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365:61–65
Panneels V, Wu W, Tsai C-J et al (2015) Time-resolved structural studies with serial crystallography: a new light on retinal proteins. Struct Dyn 2:041718
Nass Kovacs G, Colletier J, Grünbein ML et al (2019) Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat Commun 10:3177
Varma N, Mutt E, Mühle J et al (2019) Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proc Natl Acad Sci U S A 116:14547–14556
Nagata T, Koyanagi M, Tsukamoto H et al (2019) The counterion-retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Commun Biol 2:180
Yun JH, Li X, Park J-H et al (2019) Non-cryogenic structure of a chloride pump provides crucial clues to temperature-dependent channel transport efficiency. J Biol Chem 294:794–804
Hutchison CD, Cordon-Preciado V, Morgan RM et al (2017) X-ray free electron laser determination of crystal structures of dark and light states of a reversibly photoswitching fluorescent protein at room temperature. Int J Mol Sci 18:1918
Woodhouse J, Nass Kovac G, Coquelle N et al (2020) Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat Commun 11:741
Colletier JP, Sliwa M, Gallat F-X et al (2016) Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. J Phys Chem Lett 7:882–887
Coquelle N, Sliwa M, Woodhouse J et al (2018) Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat Chem 10:31–37
Edlund P, Takala H, Claesson E et al (2016) The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography. Sci Rep 6:35279
Claesson E, Wahlgren WY, Takal H et al (2020) The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. elife 9:e53514
Barends TR, Foucar L, Ardevol A et al (2015) Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–450
Ishigami I, Zatsepin NA, Hikita M et al (2017) Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Proc Natl Acad Sci U S A 114:8011–8016
Shimada A, Kubo M, Baba S et al (2017) A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. Sci Adv 3:e1603042
Nakajima K, Joti Y, Katayama T et al (2018) Software for the data analysis of the arrival-timing monitor at SACLA. J Synchrotron Radiat 25:592–603
Katayama T, Owada S, Togashi T et al (2016) A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers. Struct Dyn 3:034301
Sanchez-Gonzalez A, Johnson AS, Fitzpatrick A et al (2017) Coincidence timing of femtosecond optical pulses in an X-ray free electron laser. J Appl Phys 122:203105
Yabuuchi T, Kon A, Inubushi Y et al (2019) An experimental platform using high-power, high-intensity optical lasers with the hard X-ray free-electron laser at SACLA. J Synchrotron Radiat 26:585–594
Roessler CG, Kuczewski A, Stearns R et al (2013) Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines. J Synchrotron Radiat 20:805–808
Yano J, Yachandra V (2014) Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 114:4175–4205
Hillier W, Wydrzynski T (2008) O-18-water exchange in photosystem II: substrate binding and intermediates of the water splitting cycle. Coord Chem Rev 252:306–317
Alonso-Mori R, Sokaras D, Zhu D et al (2015) Photon-in photon-out hard X-ray spectroscopy at the Linac coherent light source. J Synchrotron Radiat 22:612–620
Alonso-Mori R, Asa K, Bergmann U et al (2016) Towards characterization of photo-excited electron transfer and catalysis in natural and artificial systems using XFELs. Faraday Discuss 194:621–638
Jensen SC, Sullivan B, Hartzler DA et al (2019) X-ray emission spectroscopy at X-ray free electron lasers: limits to observation of the classical spectroscopic response for electronic structure analysis. J Phys Chem Lett 10:441–446
Tosha T, Nomura T, Nishida T et al (2017) Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate. Nat Commun 8:1585
Deiters A, Groff D, Ryu Y et al (2006) A genetically encoded photocaged tyrosine. Angew Chem Int Ed Engl 45:2728–2731
Wang J, Liu Y, Liu Y et al (2019) Time-resolved protein activation by proximal decaging in living systems. Nature 569:509–513
Givens RS, Rubina M, Wirz J (2012) Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem Photobiol Sci 11:472–488
Johnson LN (1992) Time-resolved protein crystallography. Protein Sci 1:1237–1243
Austin RH, Beeson KW, Eisenstein L et al (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14:5355–5373
Mondal P, Meuwly M (2018) Solvent composition drives the rebinding kinetics of nitric oxide to microperoxidase. Sci Rep 8:5281
Murakawa Y, Nagai M, Mizutani Y (2012) Differences between protein dynamics of hemoglobin upon dissociation of oxygen and carbon monoxide. J Am Chem Soc 134:1434–1437
Beece D, Eisenstein J, Frauenfelder D et al (1979) Dioxygen replacement reaction in myoglobin. Biochemistry 18:3421–3423
Flanagan JC, Baiz CR (2019) Ultrafast pH-jump two-dimensional infrared spectroscopy. Opt Lett 44:4937–4940
Abbruzzetti S, Sottini S, Viappiani C, Corrie JE (2005) Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solution. J Am Chem Soc 127:9865–9874
Thompson MC, Barad BA, Wolff AM et al (2019) Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme. Nat Chem 11:1058–1066
Keedy DA, Kenner LR, Warkentin M et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. elife 4:e07574
Reddish MJ, Callender R, Dyer RB (2017) Resolution of submillisecond kinetics of multiple reaction pathways for lactate dehydrogenase. Biophys J 112:1852–1862
Winter MB, Herzik MA, Kuriyan J, Marletta MA (2011) Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain. Proc Natl Acad Sci U S A 108:E881–E889
Alberding N, Frauenfelder H, Hanggi P (1978) Stochastic theory of ligand migration in biomolecules. Proc Natl Acad Sci U S A 75:26–29
Alberding N, Austin RH, Chan SS et al (1978) Fast reactions in carbon monoxide binding to heme proteins. Biophys J 24:319–334
Kanehisa M, Sato Y, Furumichi M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595
Du J, Yuan Z, Ma Z et al (2014) KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a PATH analysis model. Mol BioSyst 10:2441–2447
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
Davidi D, Longo LM, Jablońska J et al (2018) A Bird’s-eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem Rev 118:8786–8797
Bar-Even A, Noor E, Savir Y et al (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410
Jeske L, Placzek S, Schomburg I et al (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47:D542–D549
Walsh C (2001) Enabling the chemistry of life. Nature 409:226–231
Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196–1202
Warshel A, Bora RP (2016) Perspective: defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 144:180901
Agarwal PK (2019) A biophysical perspective on enzyme catalysis. Biochemistry 58:438–449
Henzler-Wildman KA, Lei M, Thai V et al (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916
Milo R, Jorgensen P, Moran U et al (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38(Database issue):D750–D753
Schmidt M (2020) Reaction initiation in enzyme crystals by diffusion of substrate. Crystals 10:116
Schmidt M, Saldin DK (2014) Enzyme transient state kinetics in crystal and solution from the perspective of a time-resolved crystallographer. Struct Dyn 1:024701
Schmidt M (2013) Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv Condens Matter Phy 5-6:1–10
Olmos JL, Pandey S, Martin-Garcia JM et al (2018) Enzyme intermediates captured "on the fly" by mix-and-inject serial crystallography. BMC Biol 16:59
Kupitz C, Olmos JL, Holl M et al (2017) Structural enzymology using X-ray free electron lasers. Struct Dyn 4:044003
Calvey GD, Katz AM, Pollack L (2019) Microfluidic mixing injector holder enables routine structural enzymology measurements with mix-and-inject serial crystallography using X-ray free electron lasers. Anal Chem 91:7139–7144
Calvey GD, Katz AM, Schaffer CB, Pollack L (2016) Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Struct Dyn 3:054301
Monteiro DCF, Vakili M, Harich J et al (2019) A microfluidic flow-focusing device for low sample consumption serial synchrotron crystallography experiments in liquid flow. J Synchrotron Radiat 26:406–412
Grunbein ML, Nass Kovacs G (2019) Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 75:178–191
Grunbein ML, Shoeman RL, Doak RB (2018) Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers. Opt Express 26:7190–7203
Grünbein ML, Bielecki J, Gorel A et al (2018) Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat Commun 9:3487
Wiedorn MO, Oberthür D, Bean R et al (2018) Megahertz serial crystallography. Nat Commun 9:4025
Srinivas V, Banerjee R, Lebrette H et al (2020) High-resolution XFEL structure of the soluble methane monooxygenase hydroxylase complex with its regulatory component at ambient temperature in two oxidation states. J Am Chem Soc 142:14249–14266
Miller KR, Paretsky JD, Follmer AH et al (2020) Artificial iron proteins: modeling the active sites in non-heme dioxygenases. Inorg Chem 59:6000–6009
Mara MW, Hadt RG, Reinhard ME et al (2017) Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy. Science 356:1276–1280
Holm RH, Solomon EI (2014) Introduction: bioinorganic enzymology II. Chem Rev 114:3367–3368
Solomon EI, Szilagyi RK, George S et al (2004) Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem Rev 104:419–458
Holm RH, Kennepohl P, Solomon EIS (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314
Einsle O, Andrade SL, Dobbek H et al (2007) Assignment of individual metal redox states in a metalloprotein by crystallographic refinement at multiple X-ray wavelengths. J Am Chem Soc 129:2210–2211
Spatzal T, Schlesier J, Burger E-M et al (2016) Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat Commun 7:10902
Zhang L, Kaiser JT, Meloni G et al (2013) The sixteenth iron in the nitrogenase MoFe protein. Angew Chem Int Ed Engl 52:10529–10532
Zhu DL, Cammarata M, Feldkamp JM et al (2012) A single-shot transmissive spectrometer for hard x-ray free electron lasers. Appl Phys Lett 101:034103
Hattne J, Echols N, Tran R et al (2014) Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat Methods 11:545–548
Sanchez-Weatherby J, Sandy J, Mikolajek H et al (2019) VMXi: a fully automated, fully remote, high-flux in situ macromolecular crystallography beamline. J Synchrotron Radiat 26:291–301
Pravda L, Berka K, Svobodová R et al (2014) Anatomy of enzyme channels. BMC Bioinformatics 15:379
Juers DH, Ruffin J (2014) MAP_CHANNELS: a computation tool to aid in the visualization and characterization of solvent channels in macromolecular crystals. J Appl Crystallogr 47:2105–2108
Coleman RG, Sharp KA (2009) Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophys J 96:632–645
Heymann M, Opathalage A, Wierman JL et al (2014) Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 1:349–360
Abdallah BG, Zatespin NA, Roy-Chowdhury S et al (2015) Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Struct Dyn 2:041719
Kupitz C, Sierra RG (2020) Preventing bio-bloopers and XFEL follies: best practices from your friendly instrument staff. Crystals 10:251
Weierstall U (2014) Liquid sample delivery techniques for serial femtosecond crystallography. Philos Trans R Soc Lond Ser B Biol Sci 369:20130337
Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524
Dasgupta M, Budday D, de Oliveira SH et al (2019) Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis. Proc Natl Acad Sci U S A 116:25634–25640
Rabe P, Beale JH, Butryn A et al (2020) Anaerobic fixed-target serial crystallography. IUCrJ 7:901–912
Ebrahim A, Moreno-Chicano T, Appleby MV et al (2019) Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins. IUCrJ 6:543–551
Owen RL, Axford D, Sherrell DA et al (2017) Low-dose fixed-target serial synchrotron crystallography. Acta Crystallogr D Struct Biol 73:373–378
Wang D, Weierstall U, Pollack L, Spence J (2014) Double-focusing mixing jet for XFEL study of chemical kinetics. J Synchrotron Radiat 21:1364–1366
Bohne S, Heymann M, Chapman HN et al (2019) 3D printed nozzles on a silicon fluidic chip. Rev Sci Instrum 90:035108
Nelson G, Kirian RA, Weierstall U et al (2016) Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Opt Express 24:11515–11530
Trebbin M, Krüger K, DePonte D et al (2014) Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab Chip 14:1733–1745
Burgie ES, Clinger JA, Miller MD et al (2020) Photoreversible interconversion of a phytochrome photosensory module in the crystalline state. Proc Natl Acad Sci U S A 117:300–307
Acknowledgments
The authors acknowledge the financial support of this work from a Wellcome Investigator Award in Science 210734/Z/18/Z (to A.M.O.) and a Royal Society Wolfson Fellowship RSWF\R2\182017 (to A.M.O).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Aller, P., Orville, A.M. (2021). Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_11
Download citation
DOI: https://doi.org/10.1007/978-1-0716-1406-8_11
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-1405-1
Online ISBN: 978-1-0716-1406-8
eBook Packages: Springer Protocols