Skip to main content

Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2305))

Abstract

Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodsell DS, Zardecki C, Di Costmazo L et al (2020) RCSB protein data Bank: enabling biomedical research and drug discovery. Protein Sci 29:52–65

    Article  CAS  PubMed  Google Scholar 

  2. Consortium PDB (2019) Protein data bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 47:D520–D528

    Article  CAS  Google Scholar 

  3. Berman HM, Burley SK, Kleywegt GJ et al (2016) The archiving and dissemination of biological structure data. Curr Opin Struct Biol 40:17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schlichting I (2015) Serial femtosecond crystallography: the first five years. IUCrJ 2(Pt 2):246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fromme P (2015) XFELs open a new era in structural chemical biology. Nat Chem Biol 11:895–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapman HN (2019) X-ray free-electron lasers for the structure and dynamics of macromolecules. Annu Rev Biochem 88:35–58

    Article  CAS  PubMed  Google Scholar 

  7. Spence JCH (2017) XFELs for structure and dynamics in biology. IUCrJ 4:322–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breaker RR (2018) Riboswitches and translation control. Cold Spring Harb Perspect Biol 10(11)

    Google Scholar 

  9. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4(2):a003566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bhandari YR, Fan L, Fang X et al (2017) Topological structure determination of RNA using small-angle X-ray scattering. J Mol Biol 429:3635–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stagno JR, Liu Y, Bhandari YR et al (2017) Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541:242–246

    Article  CAS  PubMed  Google Scholar 

  12. Stagno JR, Bhandari YR, Conrad CE et al (2017) Real-time crystallographic studies of the adenine riboswitch using an X-ray free-electron laser. FEBS J 284:3374–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193

    Article  CAS  PubMed  Google Scholar 

  14. Henderson R (1990) Cryoprotection of protein crystals against radiation-damage in electron and X-ray-diffraction. Proc R Soc B Biol Sci 241:6–8

    Article  CAS  Google Scholar 

  15. de la Mora E, Coquelle N, Bury CS et al (2020) Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures. Proc Natl Acad Sci U S A 117:4142–4151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bury CS, Brookes-Bartlett C, Walsh SP et al (2018) Estimate your dose: RADDOSE-3D. Protein Sci 27:217–228

    Article  CAS  PubMed  Google Scholar 

  17. Garman EF, Weik M (2017) Radiation damage in macromolecular crystallography. Methods Mol Biol 1607:467–489

    Article  CAS  PubMed  Google Scholar 

  18. Zeldin OB, Brockhauser S, Brembridge J et al (2013) Predicting the X-ray lifetime of protein crystals. Proc Natl Acad Sci U S A 110:20551–20556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holton JM, Frankel KA (2010) The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D Biol Crystallogr 66:393–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li D, Caffrey M (2020) Structure and functional characterization of membrane integral proteins in the lipid cubic phase. J Mol Biol 432:5104–5123

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Q, Cherezov V (2019) Chemical tools for membrane protein structural biology. Curr Opin Struct Biol 58:278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mishin A, Gusach A, Luginina A et al (2019) An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin Drug Discovery 14:933–945

    Article  CAS  Google Scholar 

  24. Neutze R, Branden G, Schertler GF (2015) Membrane protein structural biology using X-ray free electron lasers. Curr Opin Struct Biol 33:115–125

    Article  CAS  PubMed  Google Scholar 

  25. Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309

    Article  PubMed  CAS  Google Scholar 

  26. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phillips GN (1995) XRayView: a teaching aid for X-ray crystallography. Biophys J 69:1281–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phillips GN (2011) XRayView, a virtual X-ray crystallography laboratory http://www.phillipslab.org/downloads, Access Data 14 Sep 2020

  31. Sauter NK, Kern J, Yano J, Holton JM (2020) Towards the spatial resolution of metalloprotein charge states by detailed modeling of XFEL crystallographic diffraction. Acta Crystallogr D Struct Biol 76:176–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holton JM, Frankel KA (2020) SnanoBragg, a short program for calculation of absolute scattering from molecules and small crystals https://bl831.als.lbl.gov/~jamesh/nanoBragg/, Access Data 14 Sep 2020

  33. Zhao FZ, Zhang B, Yan E-K et al (2019) A guide to sample delivery systems for serial crystallography. FEBS J 286:4402–4417

    Article  CAS  PubMed  Google Scholar 

  34. Davy B, Axford D, Beale JH et al (2019) Reducing sample consumption for serial crystallography using acoustic drop ejection. J Synchrotron Radiat 26:1820–1825

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beale JH, Bolton R, Marshall SA et al (2019) Successful sample preparation for serial crystallography experiments. J Appl Crystallogr 52:1385–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coe J, Ros A (2018) Small is beautiful: growth and detection of nanocrystals. In: Boutet S, Fromme P, Hunter M (eds) X-ray free electron lasers. Springer, Cham, pp 59–85

    Chapter  Google Scholar 

  37. Kupitz C, Grotjohann I, Conrad CE et al (2014) Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Philos Trans R Soc Lond Ser B Biol Sci 369:20130316

    Article  Google Scholar 

  38. Stan CA, Milathianaki D, Laksmono H et al (2016) Liquid explosions induced by X-ray laser pulses. Nat Phys 12:966–971

    Article  CAS  Google Scholar 

  39. Kim D, Echelmeir A, Villarreal J et al (2019) Electric triggering for enhanced control of droplet generation. Anal Chem 91:9792–9799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knoska J, Adriano L, Awel S et al (2020) Ultracompact 3D microfluidics for time-resolved structural biology. Nat Commun 11:657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oberthuer D, Knoška J, Wiedorn MO et al (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nogly P, Panneels V, Nelson G et al (2016) Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nat Commun 7:12314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DePonte DP, Weierstall U, Schmidt K et al (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41:195505

    Article  CAS  Google Scholar 

  44. Kovacsova G, Grünbein ML, Kloos M et al (2017) Viscous hydrophilic injection matrices for serial crystallography. IUCrJ 4:400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Conrad CE, Basu S, James D et al (2015) A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2:421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sierra RG, Gati C, Laksmono H et al (2016) Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nat Methods 13:59–62

    Article  CAS  PubMed  Google Scholar 

  47. Dao EH, Poitvin F, Sierra RG et al (2018) Structure of the 30S ribosomal decoding complex at ambient temperature. RNA 24:1667–1676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tetreau G, Banneville A-S, Andreeva EA et al (2020) Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nat Commun 11:1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kern J, Chatterjee R, Young ID et al (2018) Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563:421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Orville AM (2017) Acoustic methods for on-demand sample injection into XFEL beams. In: X-ray free electron lasers: applications in materials, chemistry and biology. The Royal Society of Chemistry, pp 348–364

    Google Scholar 

  51. Fuller FD, Gul S, Chatterjee R et al (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roessler CG, Agarwal R, Allaire M et al (2016) Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soares AS, Engel MA, Stearns R et al (2011) Acoustically mounted microcrystals yield high-resolution X-ray structures. Biochemistry 50:4399–4401

    Article  CAS  PubMed  Google Scholar 

  54. Wu P, Noland C, Ultsch M et al (2016) Developments in the implementation of acoustic droplet ejection for protein crystallography. J Lab Autom 21:97–106

    Article  CAS  PubMed  Google Scholar 

  55. Mafune F, Miyajima K, Tono K et al (2016) Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallogr D Struct Biol 72:520–523

    Article  CAS  PubMed  Google Scholar 

  56. Hadimioglu B, Stearns R, Ellson R (2016) Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J Lab Autom 21:4–18

    Article  PubMed  Google Scholar 

  57. Hunter MS, Segelke B, Messerschimdt M et al (2014) Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci Rep 4:6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Doak RB, Kovacs GN, Gorel A et al (2018) Crystallography on a chip—without the chip: sheet-on-sheet sandwich. Acta Crystallogr Sect D Struct Biol 74:1000–1007

    Article  CAS  Google Scholar 

  59. Oghbaey S, Sarracini A, Ginn HM et al (2016) Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. Acta Crystallogr D Struct Biol 72:944–955

    Article  CAS  PubMed  Google Scholar 

  60. Sherrell DA, Foster AJ, Hudson L et al (2015) A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources. J Synchrotron Radiat 22:1372–1378

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mueller C, Marx A, Epp SW et al (2015) Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Struct Dyn 2:054302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aller P, San chez-Weatherby J, Foadi J et al (2015) Application of in situ diffraction in high-throughput structure determination platforms. Methods Mol Biol 1261:233–253

    Article  CAS  PubMed  Google Scholar 

  63. Lieske J, Cerv M, Kreida S et al (2019) On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. IUCrJ 6:714–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roedig P, Ginn HM, Pakendorf T et al (2017) High-speed fixed-target serial virus crystallography. Nat Methods 14:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roedig P, Duman R, Weatherby-Sanchez J et al (2016) Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J Appl Crystallogr 49:968–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roedig P, Vartiainen I, Duman R et al (2015) A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci Rep 5:10451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shelby ML, Gilbile D, Grant TD et al (2020) A fixed-target platform for serial femtosecond crystallography in a hydrated environment. IUCrJ 7:30–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chreifi G, Baxter EL, Doukov T et al (2016) Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer. Proc Natl Acad Sci U S A 113:1226–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baxter EL, Aguila L, Alonso-Mori R et al (2016) High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Struct Biol 72:2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cohen AE, Soltis M, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 11:17122–17127

    Article  CAS  Google Scholar 

  71. Zander U, Bourenkov G, Popov A et al (2015) MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallogr D Biol Crystallogr 71:2328–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orville AM (2020) Recent results in time resolved serial femtosecond crystallography at XFELs. Curr Opin Struct Biol 65:193–208

    Google Scholar 

  73. Sauter NK, Rose JP, Bhat TN (2020) Transactions from the 69th Annual Meeting of the American Crystallographic Association: data best practices-current state and future needs. Struct Dyn 7:021301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bernstein HJ, Andrews LC, Diaz J et al (2020) Best practices for high data-rate macromolecular crystallography (HDRMX). Struct Dyn 7:014302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Leonarski F, Mozzanica A, Brückner M et al (2020) JUNGFRAU detector for brighter x-ray sources: solutions for IT and data science challenges in macromolecular crystallography. Struct Dyn 7:014305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meisburger SP, Case DA, Ando N (2020) Diffuse X-ray scattering from correlated motions in a protein crystal. Nat Commun 11:1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Forster A, Schulze-Briese C (2019) A shared vision for macromolecular crystallography over the next five years. Struct Dyn 6:064302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Helliwell JR, McMahon B, Guss JM et al (2017) The science is in the data. IUCrJ 4:714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grimes JM, Hall DR, Ashton AW et al (2018) Where is crystallography going? Acta Crystallogr D Struct Biol 74:152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martiel I, Muller-Werkmeister HM, Cohen AE (2019) Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr D Struct Biol 75:160–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meents A, Wiedorn MO, Srajer V et al (2017) Pink-beam serial crystallography. Nat Commun 8:1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mehrabi P, Schultz EC, Agthe M et al (2019) Liquid application method for time-resolved analyses by serial synchrotron crystallography. Nat Methods 16:979–982

    Article  CAS  PubMed  Google Scholar 

  83. Martin-Garcia JM, Conrad CE, Nelson G et al (2017) Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ 4:439–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martin-Garcia JM, Zhu L, Mendez D et al (2019) High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source. IUCrJ 6:412–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chenevier D, Joly A (2018) ESRF: inside the extremely brilliant source upgrade. Synchrotron Radiat News 31:32–35

    Article  Google Scholar 

  86. Chapon LC, Boscaro-Clarke I, Dent AJ, et al (2019) Diamond-II — Conceptual Design Report. Diamond Light Source Ltd.: Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK

    Google Scholar 

  87. Boscaro-Clarke I, Evans G, Rambo R et al (2019) Diamond-II—Advancing Science. 2019, Diamond Light Source Ltd: Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK

    Google Scholar 

  88. Grünbein ML, Stricker M, Kovacs GN et al (2020) Illumination guidelines for ultrafast pump-probe experiments by serial femtosecond crystallography. Nat Methods 17:681–684

    Article  PubMed  CAS  Google Scholar 

  89. Johansson LC, Arnlund D, Katona G et al (2013) Structure of a photosynthetic reaction Centre determined by serial femtosecond crystallography. Nat Commun 4:2911

    Article  PubMed  CAS  Google Scholar 

  90. Wiedorn MO, Awel S, Morgan AJ et al (2018) Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ 5:574–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Echelmeier A, Kim D, Villareal JC et al (2019) 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J Appl Crystallogr 52:997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gisriel C, Coe J, Letrun R et al (2019) Membrane protein megahertz crystallography at the European XFEL. Nat Commun 10:5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aquila A et al (2012) Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt Express 20:2706–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Suga M, Hunter MS, Doak RB et al (2020) Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim Biophys Acta Gen Subj 1864:129466

    Article  CAS  PubMed  Google Scholar 

  95. Suga M, Akita F, Yamashita K et al (2019) An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366:334–338

    Article  CAS  PubMed  Google Scholar 

  96. Suga M, Akita F, Hirata K et al (2015) Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Article  CAS  PubMed  Google Scholar 

  97. Young ID, Ibrahim M, Chatterjee R et al (2016) Structure of photosystem II and substrate binding at room temperature. Nature 540:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kern J, Yachandra VK, Yano J (2015) Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers. Curr Opin Struct Biol 34:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kern J, Tran R, Alonos-Mori R et al (2014) Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat Commun 5:4371

    Article  CAS  PubMed  Google Scholar 

  100. Kern J, Alonso-Mori R, Tran R et al (2013) Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340:491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alonso-Mori R, Kern J, Gildea RJ et al (2012) Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proc Natl Acad Sci U S A 109:19103–19107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fransson T, Chatterjee R, Fuller FD et al (2018) X-ray emission spectroscopy as an in situ diagnostic tool for X-ray crystallography of metalloproteins using an X-ray free-electron laser. Biochemistry 57:4629–4637

    Article  CAS  PubMed  Google Scholar 

  103. Ibrahim M, Fransson T, Chatterjee R et al (2020) Untangling the sequence of events during the S2 --> S3 transition in photosystem II and implications for the water oxidation mechanism. Proc Natl Acad Sci U S A 117:12624–12635

    Google Scholar 

  104. Kupitz C, Bsu S, Grotjohann I et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ayyer K, Yefanov OM, Oberthür D et al (2016) Macromolecular diffractive imaging using imperfect crystals. Nature 530:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Suga M, Akita F, Sugahara M et al (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–135

    Article  CAS  PubMed  Google Scholar 

  107. Tenboer J, Basu S, Zatsepin N et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pande K, Hutchinson CD, Groenhof G et al (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pandey S, Bean R, et a ST (2019) Time-resolved serial femtosecond crystallography at the European XFEL. Nat Methods 17:73–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou XE, Goa X, Barty A et al (2016) X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Sci Data 3:160021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nakane T, Hanashima S, Suzuki M et al (2016) Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent. Proc Natl Acad Sci U S A 113:13039–13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nango E, Royant A, Kubo M et al (2016) A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552–1557

    Article  CAS  PubMed  Google Scholar 

  114. Nogly P, Weinert T, James D et al (2018) Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:145

    CAS  Google Scholar 

  115. Wickstrand C, Nogly P, Nango E et al (2019) Bacteriorhodopsin: structural insights revealed using X-ray lasers and synchrotron radiation. Annu Rev Biochem 88:59–83

    Article  CAS  PubMed  Google Scholar 

  116. Weinert T, Skopintsev P, James D et al (2019) Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365:61–65

    Article  CAS  PubMed  Google Scholar 

  117. Panneels V, Wu W, Tsai C-J et al (2015) Time-resolved structural studies with serial crystallography: a new light on retinal proteins. Struct Dyn 2:041718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Nass Kovacs G, Colletier J, Grünbein ML et al (2019) Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat Commun 10:3177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Varma N, Mutt E, Mühle J et al (2019) Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proc Natl Acad Sci U S A 116:14547–14556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nagata T, Koyanagi M, Tsukamoto H et al (2019) The counterion-retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Commun Biol 2:180

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yun JH, Li X, Park J-H et al (2019) Non-cryogenic structure of a chloride pump provides crucial clues to temperature-dependent channel transport efficiency. J Biol Chem 294:794–804

    Article  CAS  PubMed  Google Scholar 

  122. Hutchison CD, Cordon-Preciado V, Morgan RM et al (2017) X-ray free electron laser determination of crystal structures of dark and light states of a reversibly photoswitching fluorescent protein at room temperature. Int J Mol Sci 18:1918

    Article  PubMed Central  CAS  Google Scholar 

  123. Woodhouse J, Nass Kovac G, Coquelle N et al (2020) Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat Commun 11:741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Colletier JP, Sliwa M, Gallat F-X et al (2016) Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. J Phys Chem Lett 7:882–887

    Article  CAS  PubMed  Google Scholar 

  125. Coquelle N, Sliwa M, Woodhouse J et al (2018) Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat Chem 10:31–37

    Article  CAS  PubMed  Google Scholar 

  126. Edlund P, Takala H, Claesson E et al (2016) The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography. Sci Rep 6:35279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Claesson E, Wahlgren WY, Takal H et al (2020) The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. elife 9:e53514

    Article  PubMed  PubMed Central  Google Scholar 

  128. Barends TR, Foucar L, Ardevol A et al (2015) Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–450

    Article  CAS  PubMed  Google Scholar 

  129. Ishigami I, Zatsepin NA, Hikita M et al (2017) Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Proc Natl Acad Sci U S A 114:8011–8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shimada A, Kubo M, Baba S et al (2017) A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. Sci Adv 3:e1603042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Nakajima K, Joti Y, Katayama T et al (2018) Software for the data analysis of the arrival-timing monitor at SACLA. J Synchrotron Radiat 25:592–603

    Article  PubMed  Google Scholar 

  132. Katayama T, Owada S, Togashi T et al (2016) A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers. Struct Dyn 3:034301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sanchez-Gonzalez A, Johnson AS, Fitzpatrick A et al (2017) Coincidence timing of femtosecond optical pulses in an X-ray free electron laser. J Appl Phys 122:203105

    Article  CAS  Google Scholar 

  134. Yabuuchi T, Kon A, Inubushi Y et al (2019) An experimental platform using high-power, high-intensity optical lasers with the hard X-ray free-electron laser at SACLA. J Synchrotron Radiat 26:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roessler CG, Kuczewski A, Stearns R et al (2013) Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines. J Synchrotron Radiat 20:805–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yano J, Yachandra V (2014) Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 114:4175–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hillier W, Wydrzynski T (2008) O-18-water exchange in photosystem II: substrate binding and intermediates of the water splitting cycle. Coord Chem Rev 252:306–317

    Article  CAS  Google Scholar 

  138. Alonso-Mori R, Sokaras D, Zhu D et al (2015) Photon-in photon-out hard X-ray spectroscopy at the Linac coherent light source. J Synchrotron Radiat 22:612–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Alonso-Mori R, Asa K, Bergmann U et al (2016) Towards characterization of photo-excited electron transfer and catalysis in natural and artificial systems using XFELs. Faraday Discuss 194:621–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jensen SC, Sullivan B, Hartzler DA et al (2019) X-ray emission spectroscopy at X-ray free electron lasers: limits to observation of the classical spectroscopic response for electronic structure analysis. J Phys Chem Lett 10:441–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Tosha T, Nomura T, Nishida T et al (2017) Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate. Nat Commun 8:1585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Deiters A, Groff D, Ryu Y et al (2006) A genetically encoded photocaged tyrosine. Angew Chem Int Ed Engl 45:2728–2731

    Article  CAS  PubMed  Google Scholar 

  143. Wang J, Liu Y, Liu Y et al (2019) Time-resolved protein activation by proximal decaging in living systems. Nature 569:509–513

    Article  CAS  PubMed  Google Scholar 

  144. Givens RS, Rubina M, Wirz J (2012) Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem Photobiol Sci 11:472–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Johnson LN (1992) Time-resolved protein crystallography. Protein Sci 1:1237–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Austin RH, Beeson KW, Eisenstein L et al (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14:5355–5373

    Article  CAS  PubMed  Google Scholar 

  147. Mondal P, Meuwly M (2018) Solvent composition drives the rebinding kinetics of nitric oxide to microperoxidase. Sci Rep 8:5281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Murakawa Y, Nagai M, Mizutani Y (2012) Differences between protein dynamics of hemoglobin upon dissociation of oxygen and carbon monoxide. J Am Chem Soc 134:1434–1437

    Article  CAS  PubMed  Google Scholar 

  149. Beece D, Eisenstein J, Frauenfelder D et al (1979) Dioxygen replacement reaction in myoglobin. Biochemistry 18:3421–3423

    Article  CAS  PubMed  Google Scholar 

  150. Flanagan JC, Baiz CR (2019) Ultrafast pH-jump two-dimensional infrared spectroscopy. Opt Lett 44:4937–4940

    Article  CAS  PubMed  Google Scholar 

  151. Abbruzzetti S, Sottini S, Viappiani C, Corrie JE (2005) Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solution. J Am Chem Soc 127:9865–9874

    Article  CAS  PubMed  Google Scholar 

  152. Thompson MC, Barad BA, Wolff AM et al (2019) Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme. Nat Chem 11:1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Keedy DA, Kenner LR, Warkentin M et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. elife 4:e07574

    Article  PubMed  PubMed Central  Google Scholar 

  154. Reddish MJ, Callender R, Dyer RB (2017) Resolution of submillisecond kinetics of multiple reaction pathways for lactate dehydrogenase. Biophys J 112:1852–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Winter MB, Herzik MA, Kuriyan J, Marletta MA (2011) Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain. Proc Natl Acad Sci U S A 108:E881–E889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Alberding N, Frauenfelder H, Hanggi P (1978) Stochastic theory of ligand migration in biomolecules. Proc Natl Acad Sci U S A 75:26–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Alberding N, Austin RH, Chan SS et al (1978) Fast reactions in carbon monoxide binding to heme proteins. Biophys J 24:319–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kanehisa M, Sato Y, Furumichi M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595

    Article  CAS  PubMed  Google Scholar 

  159. Du J, Yuan Z, Ma Z et al (2014) KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a PATH analysis model. Mol BioSyst 10:2441–2447

    Article  CAS  PubMed  Google Scholar 

  160. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Davidi D, Longo LM, Jablońska J et al (2018) A Bird’s-eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem Rev 118:8786–8797

    Article  CAS  PubMed  Google Scholar 

  162. Bar-Even A, Noor E, Savir Y et al (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410

    Article  CAS  PubMed  Google Scholar 

  163. Jeske L, Placzek S, Schomburg I et al (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47:D542–D549

    Article  CAS  PubMed  Google Scholar 

  164. Walsh C (2001) Enabling the chemistry of life. Nature 409:226–231

    Article  CAS  PubMed  Google Scholar 

  165. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196–1202

    Article  CAS  PubMed  Google Scholar 

  166. Warshel A, Bora RP (2016) Perspective: defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 144:180901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Agarwal PK (2019) A biophysical perspective on enzyme catalysis. Biochemistry 58:438–449

    Article  CAS  PubMed  Google Scholar 

  168. Henzler-Wildman KA, Lei M, Thai V et al (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916

    Article  CAS  PubMed  Google Scholar 

  169. Milo R, Jorgensen P, Moran U et al (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38(Database issue):D750–D753

    Article  CAS  PubMed  Google Scholar 

  170. Schmidt M (2020) Reaction initiation in enzyme crystals by diffusion of substrate. Crystals 10:116

    Article  CAS  Google Scholar 

  171. Schmidt M, Saldin DK (2014) Enzyme transient state kinetics in crystal and solution from the perspective of a time-resolved crystallographer. Struct Dyn 1:024701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Schmidt M (2013) Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv Condens Matter Phy 5-6:1–10

    Google Scholar 

  173. Olmos JL, Pandey S, Martin-Garcia JM et al (2018) Enzyme intermediates captured "on the fly" by mix-and-inject serial crystallography. BMC Biol 16:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Kupitz C, Olmos JL, Holl M et al (2017) Structural enzymology using X-ray free electron lasers. Struct Dyn 4:044003

    Article  PubMed  CAS  Google Scholar 

  175. Calvey GD, Katz AM, Pollack L (2019) Microfluidic mixing injector holder enables routine structural enzymology measurements with mix-and-inject serial crystallography using X-ray free electron lasers. Anal Chem 91:7139–7144

    Article  CAS  PubMed  Google Scholar 

  176. Calvey GD, Katz AM, Schaffer CB, Pollack L (2016) Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Struct Dyn 3:054301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Monteiro DCF, Vakili M, Harich J et al (2019) A microfluidic flow-focusing device for low sample consumption serial synchrotron crystallography experiments in liquid flow. J Synchrotron Radiat 26:406–412

    Article  CAS  PubMed  Google Scholar 

  178. Grunbein ML, Nass Kovacs G (2019) Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 75:178–191

    Article  PubMed  PubMed Central  Google Scholar 

  179. Grunbein ML, Shoeman RL, Doak RB (2018) Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers. Opt Express 26:7190–7203

    Article  CAS  PubMed  Google Scholar 

  180. Grünbein ML, Bielecki J, Gorel A et al (2018) Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat Commun 9:3487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Wiedorn MO, Oberthür D, Bean R et al (2018) Megahertz serial crystallography. Nat Commun 9:4025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Srinivas V, Banerjee R, Lebrette H et al (2020) High-resolution XFEL structure of the soluble methane monooxygenase hydroxylase complex with its regulatory component at ambient temperature in two oxidation states. J Am Chem Soc 142:14249–14266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Miller KR, Paretsky JD, Follmer AH et al (2020) Artificial iron proteins: modeling the active sites in non-heme dioxygenases. Inorg Chem 59:6000–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mara MW, Hadt RG, Reinhard ME et al (2017) Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy. Science 356:1276–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Holm RH, Solomon EI (2014) Introduction: bioinorganic enzymology II. Chem Rev 114:3367–3368

    Article  CAS  PubMed  Google Scholar 

  186. Solomon EI, Szilagyi RK, George S et al (2004) Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem Rev 104:419–458

    Article  CAS  PubMed  Google Scholar 

  187. Holm RH, Kennepohl P, Solomon EIS (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314

    Article  CAS  PubMed  Google Scholar 

  188. Einsle O, Andrade SL, Dobbek H et al (2007) Assignment of individual metal redox states in a metalloprotein by crystallographic refinement at multiple X-ray wavelengths. J Am Chem Soc 129:2210–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Spatzal T, Schlesier J, Burger E-M et al (2016) Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat Commun 7:10902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang L, Kaiser JT, Meloni G et al (2013) The sixteenth iron in the nitrogenase MoFe protein. Angew Chem Int Ed Engl 52:10529–10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhu DL, Cammarata M, Feldkamp JM et al (2012) A single-shot transmissive spectrometer for hard x-ray free electron lasers. Appl Phys Lett 101:034103

    Article  CAS  Google Scholar 

  192. Hattne J, Echols N, Tran R et al (2014) Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat Methods 11:545–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sanchez-Weatherby J, Sandy J, Mikolajek H et al (2019) VMXi: a fully automated, fully remote, high-flux in situ macromolecular crystallography beamline. J Synchrotron Radiat 26:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pravda L, Berka K, Svobodová R et al (2014) Anatomy of enzyme channels. BMC Bioinformatics 15:379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Juers DH, Ruffin J (2014) MAP_CHANNELS: a computation tool to aid in the visualization and characterization of solvent channels in macromolecular crystals. J Appl Crystallogr 47:2105–2108

    Article  PubMed  PubMed Central  Google Scholar 

  196. Coleman RG, Sharp KA (2009) Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophys J 96:632–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Heymann M, Opathalage A, Wierman JL et al (2014) Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 1:349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Abdallah BG, Zatespin NA, Roy-Chowdhury S et al (2015) Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Struct Dyn 2:041719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Kupitz C, Sierra RG (2020) Preventing bio-bloopers and XFEL follies: best practices from your friendly instrument staff. Crystals 10:251

    Article  CAS  Google Scholar 

  200. Weierstall U (2014) Liquid sample delivery techniques for serial femtosecond crystallography. Philos Trans R Soc Lond Ser B Biol Sci 369:20130337

    Article  Google Scholar 

  201. Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dasgupta M, Budday D, de Oliveira SH et al (2019) Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis. Proc Natl Acad Sci U S A 116:25634–25640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rabe P, Beale JH, Butryn A et al (2020) Anaerobic fixed-target serial crystallography. IUCrJ 7:901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ebrahim A, Moreno-Chicano T, Appleby MV et al (2019) Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins. IUCrJ 6:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Owen RL, Axford D, Sherrell DA et al (2017) Low-dose fixed-target serial synchrotron crystallography. Acta Crystallogr D Struct Biol 73:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang D, Weierstall U, Pollack L, Spence J (2014) Double-focusing mixing jet for XFEL study of chemical kinetics. J Synchrotron Radiat 21:1364–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bohne S, Heymann M, Chapman HN et al (2019) 3D printed nozzles on a silicon fluidic chip. Rev Sci Instrum 90:035108

    Article  PubMed  CAS  Google Scholar 

  208. Nelson G, Kirian RA, Weierstall U et al (2016) Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Opt Express 24:11515–11530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Trebbin M, Krüger K, DePonte D et al (2014) Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab Chip 14:1733–1745

    Article  CAS  PubMed  Google Scholar 

  210. Burgie ES, Clinger JA, Miller MD et al (2020) Photoreversible interconversion of a phytochrome photosensory module in the crystalline state. Proc Natl Acad Sci U S A 117:300–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of this work from a Wellcome Investigator Award in Science 210734/Z/18/Z (to A.M.O.) and a Royal Society Wolfson Fellowship RSWF\R2\182017 (to A.M.O).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen M. Orville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aller, P., Orville, A.M. (2021). Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1406-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1405-1

  • Online ISBN: 978-1-0716-1406-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics