Evidence is accumulating that short chain fatty acids (SCFA) play an important role in the maintenance of gut and metabolic health. The SCFA acetate, propionate and butyrate are produced from the microbial fermentation of indigestible carbohydrates and appear to be key mediators of the beneficial effects elicited by the gut microbiome. Microbial SCFA production is essential for gut integrity by regulating the luminal pH, mucus production, providing fuel for epithelial cells and effects on mucosal immune function. SCFA also directly modulate host metabolic health through a range of tissue-specific mechanisms related to appetite regulation, energy expenditure, glucose homeostasis and immunomodulation. Therefore, an increased microbial SCFA production can be considered as a health benefit, but data are mainly based on animal studies, whereas well-controlled human studies are limited. In this review an expert group by ILSI Europe’s Prebiotics Task Force discussed the current scientific knowledge on SCFA to consider the relationship between SCFA and gut and metabolic health with a particular focus on human evidence. Overall, the available mechanistic data and limited human data on the metabolic consequences of elevated gut-derived SCFA production strongly suggest that increasing SCFA production could be a valuable strategy in the preventing gastro-intestinal dysfunction, obesity and type 2 diabetes mellitus. Nevertheless, there is an urgent need for well controlled longer term human SCFA intervention studies, including measurement of SCFA fluxes and kinetics, the heterogeneity in response based on metabolic phenotype, the type of dietary fibre and fermentation site in fibre intervention studies and the control for factors that could shape the microbiome like diet, physical activity and use of medication.
Aberdein, N., Schweizer, M. and Ball, D., 2014. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes. Adipocyte 3: 121.
'Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes ' () 3 Adipocyte : 121 .
Aguilar, E.C., Leonel, A.J., Teixeira, L.G., Silva, A.R., Silva, J.F., Pelaez, J.M.N., Capettini, L.S.A., Lemos, V.S., Santos, R.A.S. and Alvarez-Leite, J.I., 2014. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutrition, Metabolism and Cardiovascular Diseases 24: 606-613. https://doi.org/10.1016/j.numecd.2014.01.002
Aguirre, M., De Souza, C.B. and Venema, K., 2016. The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLoS ONE 11: e0159236. https://doi.org/10.1371/journal.pone.0159236
Al-Lahham, S.a., Roelofsen, H., Rezaee, F., Weening, D., Hoek, A., Vonk, R. and Venema, K., 2012. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. European Journal of Clinical Investigation 42: 357-364. https://doi.org/10.1111/j.1365-2362.2011.02590.x
Al-Lahham, S.a.H., Peppelenbosch, M.P., Roelofsen, H., Vonk, R.J. and Venema, K., 2010a. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochimica et Biophysica Acta 1801: 1175-1183. https://doi.org/10.1016/j.bbalip.2010.07.007
Al-Lahham, S.a.H., Roelofsen, H., Priebe, M., Weening, D., Dijkstra, M., Hoek, A., Rezaee, F., Venema, K. and Vonk, R.J., 2010b. Regulation of adipokine production in human adipose tissue by propionic acid. European Journal of Clinical Investigation 40: 401-407. https://doi.org/10.1111/j.1365-2362.2010.02278.x
Alles, M.S., Hautvast, J.G.A.J., Nagengast, F.M., Hartemink, R., Van Laere, K.M.J. and Jansen, J.B.M.J., 1996. Fate of fructo-oligosaccharides in the human intestine. British Journal of Nutrition 76: 211-221. https://doi.org/10.1079/BJN19960026
Almeida, A., Mitchell, A.L., Boland, M., Forster, S.C., Gloor, G.B., Tarkowska, A., Lawley, T.D. and Finn, R.D., 2019. A new genomic blueprint of the human gut microbiota. Nature 568: 499-504. https://doi.org/10.1038/s41586-019-0965-1
Andrade-Oliveira, V., Amano, M.T., Correa-Costa, M., Castoldi, A., Felizardo, R.J.F., Almeida, D.C.d., Bassi, E.J., Moraes-Vieira, P.M., Hiyane, M.I., Rodas, A.C.D., Peron, J.P.S., Aguiar, C.F., Reis, M.A., Ribeiro, W.R., Valduga, C.J., Curi, R., Vinolo, M.A.R., Ferreira, C.M. and Camara, N.O.S., 2015. Gut bacteria products prevent AKI induced by ischemia-reperfusion. Journal of the American Society of Nephrology 26: 1877-1888. https://doi.org/10.1681/asn.2014030288
Aoyama, M., Kotani, J. and Usami, M., 2010. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition 26: 653-661. https://doi.org/10.1016/j.nut.2009.07.006
Arnoldussen, I.A.C., Wiesmann, M., Pelgrim, C.E., Wielemaker, E.M., Duyvenvoorde, W.V., Amaral-santos, P.L., Verschuren, L. and Keijser, B.J.F., 2017. Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice. International Journal of Obesity 41: 935-944. https://doi.org/10.1038/ijo.2017.52
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van der Veeken, J., deRoos, P., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J. and Rudensky, A.Y., 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504: 451-455. https://doi.org/10.1038/nature12726
Bain, M.D., Borriello, S.P., Tracey, B.M., Jones, M., Reed, P.J., Chalmers, R.A. and Stacey, T.E., 1988. Contribution of gut bacterial metabolism to human metabolic disease. The Lancet 331: 1078-1079. https://doi.org/10.1016/S0140-6736(88)91898-3
Barcelo, A., Claustre, J., Moro, F., Chayvialle, J.A., Cuber, J.C. and Plaisancié, P., 2000. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46: 218-224. https://doi.org/10.1136/gut.46.2.218
Belenguer, A., Duncan, S.H., Calder, A.G., Holtrop, G., Louis, P., Lobley, G.E. and Flint, H.J., 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Applied and Environmental Microbiology 72: 3593-3599. https://doi.org/10.1128/AEM.72.5.3593-3599.2006
Bellahcene, M., O’Dowd, J.F., Wargent, E.T., Zaibi, M.S., Hislop, D.C., Ngala, R.A., Smith, D.M., Cawthorne, M.A., Stocker, C.J. and Arch, J.R., 2013. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. British Journal of Nutrition 109: 1755-1764. https://doi.org/10.1017/S0007114512003923
Belzer, C., Chia, L.W., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J. and De Vos, W.M., 2017. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio 8. https://doi.org/10.1128/mBio.00770-17
Bergman, E.N., 1990. Energy contributions of volatile fatty-acids from the gastrointestinal-tract in various species. Physiological Reviews 70: 567-590.
'Energy contributions of volatile fatty-acids from the gastrointestinal-tract in various species ' () 70 Physiological Reviews : 567 -590 .
Bhatt, D.P., Houdek, H.M., Watt, J.A. and Rosenberger, T.A., 2013. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis. Neurochemistry International 62: 296-305. https://doi.org/10.1016/j.neuint.2013.01.004
Binsl, T.W., De Graaf, A.A., Venema, K., Heringa, J., Maathuis, A., De Waard, P. and Van Beek, J.H.G.M., 2010. Measuring non-steady-state metabolic fluxes in starch-converting faecal microbiota in vitro. Beneficial Microbes 1: 391-405. https://doi.org/10.3920/BM2010.0038
Bischoff, S.C., 2011. ‘Gut health’: a new objective in medicine? BMC Medicine 9: 24. https://doi.org/10.1186/1741-7015-9-24
Bjursell, M., Admyre, T., Goransson, M., Marley, A.E., Smith, D.M., Oscarsson, J. and Bohlooly, Y.M., 2011. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. American Journal of Physiology and Endocrinology Metabolism 300: E211-220. https://doi.org/10.1152/ajpendo.00229.2010
Blachier, F., Beaumont, M., Portune, K.J., Steuer, N., Lan, A., Audebert, M., Khodorova, N., Andriamihaja, M., Airinei, G., Benamouzig, R., Davila, A.-M., Armand, L., Rampelli, S., Brigidi, P., Tomé, D., Claus, S.P. and Sanz, Y., 2019. High-protein diets for weight management: interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group. Clinical Nutrition 38: 1012-1022. https://doi.org/10.1016/j.clnu.2018.09.016
Boets, E., Deroover, L., Houben, E., Verbeke, K., S.V, G. and Delcour, J.A., 2015. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7: 8916-8929. https://doi.org/10.3390/nu7115440
Boets, E., Gomand, S.V., Deroover, L., Preston, T., Vermeulen, K., De Preter, V., Hamer, H.M., Van den Mooter, G., De Vuyst, L., Courtin, C.M., Annaert, P., Delcour, J.A. and Verbeke, K.A., 2017. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. Journal of Physiology 595: 541-555. https://doi.org/10.1113/JP272613
Bouter, K.E.C., Bakker, G.J., Levin, E., Hartstra, A.V., Kootte, R.S., Udayappan, S.D., Katiraei, S., Bahler, L., Gilijamse, P.W. and Tremaroli, V., 2018. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clinical and Translational Gastroenterology 9: 155.
'Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects ' () 9 Clinical and Translational Gastroenterology : 155 .
Bunesova, V., Lacroix, C. and Schwab, C., 2018. Mucin cross-feeding of infant bifidobacteria and Eubacterium hallii. Microbial Ecology 75: 228-238. https://doi.org/10.1007/s00248-017-1037-4
Burger-Van Paassen, N., Vincent, A., Puiman, Patrycja, J., Van der Sluis, M., Bouma, J., Boehm, G., Van Goudoever, J.B., Van Seuningen, I. and Renes, I.B., 2009. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochemical Journal 420: 211-219.
'The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection ' () 420 Biochemical Journal : 211 -219 .
Byrne, C.S., Chambers, E.S., Alhabeeb, H., Chhina, N., Morrison, D.J., Preston, T., Tedford, C., Fitzpatrick, J., Irani, C., Busza, A., Garcia-perez, I., Fountana, S., Holmes, E., Goldstone, A.P. and Frost, G.S., 2016. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. American Journal of Clinical Nutrition 104(1): 5-14. https://doi.org/10.3945/ajcn.115.126706.1
Canfora, E.E., Jocken, J.W. and Blaak, E.E., 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology 11: 577-591. https://doi.org/10.1038/nrendo.2015.128
Canfora, E.E., Meex, R.C.R., Venema, K. and Blaak, E.E., 2019. Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews Endocrinology 15: 261-273. https://doi.org/10.1038/s41574-019-0156-z
Canfora, E.E., Van der Beek, C.M., Hermes, G.D.A., Goossens, G.H., Jocken, J.W.E., Holst, J.J., Van Eijk, H.M., Venema, K., Smidt, H., Zoetendal, E.G. Dejong, C.H.C., Lenaerts, K. and Blaak, E.E., 2017a. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 153: 87-97. https://doi.org/10.1053/j.gastro.2017.03.051
Canfora, E.E., Van der Beek, C.M., Jocken, J.W.E., Goossens, G.H., Holst, J.J., Olde Damink, S.W.M., Lenaerts, K., Dejong, C.H.C. and Blaak, E.E., 2017b. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Scientific Reports 7: 2206-2206. https://doi.org/10.1038/s41598-017-02546-x
Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M. and Chabo, C., 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761-1772.
'Metabolic endotoxemia initiates obesity and insulin resistance ' () 56 Diabetes : 1761 -1772 .
Cani, P.D., Lecourt, E., Dewulf, E.M., Sohet, F.M., Pachikian, B.D., Naslain, D., De Backer, F., Neyrinck, A.M. and Delzenne, N.M., 2009a. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. American Journal of Clinical Nutrition 90: 1236-1243.
'Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal ' () 90 American Journal of Clinical Nutrition : 1236 -1243 .
Cani, P.D., Possemiers, S., Van de Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D.M., Muccioli, G.G. and Delzenne, N.M., 2009b. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58: 1091-1103. https://doi.org/10.1136/gut.2008.165886
Cavaglieri, C.R., Nishiyama, A., Fernandes, L.C., Curi, R., Miles, E.A. and Calder, P.C., 2003. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sciences 73: 1683-1690.
'Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes ' () 73 Life Sciences : 1683 -1690 .
Chambers, E.S., Byrne, C.S., Aspey, K., Chen, Y., Khan, S., Morrison, D.J. and Frost, G., 2018a. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes, Obesity and Metabolism 20: 1034-1039. https://doi.org/10.1111/dom.13159
Chambers, E.S., Preston, T., Frost, G. and Morrison, D.J., 2018b. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports 7: 198-206. https://doi.org/10.1007/s13668-018-0248-8
Chambers, E.S., Viardot, A., Psichas, A., Morrison, D.J., Murphy, K.G., Zac-varghese, S.E.K., Macdougall, K., Preston, T., Tedford, C., Finlayson, G.S., Blundell, J.E., Bell, J.D., Thomas, E.L., Mt-isa, S., Ashby, D., Gibson, G.R., Dhillo, W.S., Bloom, S.R., Morley, W., Clegg, S. and Frost, G., 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. BMJ 64: 1744-1754. https://doi.org/10.1136/gutjnl-2014-307913
Cherbut, C., 2003. Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proceedings of the Nutrition Society 62: 95-99.
'Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract ' () 62 Proceedings of the Nutrition Society : 95 -99 .
Cherbut, C., Ferrier, L., Roze, C., Anini, Y., Blottiere, H., Lecannu, G. and Galmiche, J.P., 1998. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. American Journal of Physiologyy 275: G1415-1422.
'Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat ' () 275 American Journal of Physiologyy : G1415 -1422 .
Chia, L.W., Hornung, B.V.H., Aalvink, S., Schaap, P.J., De Vos, W.M., Knol, J. and Belzer, C., 2018. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie van Leeuwenhoek 111: 859-873. https://doi.org/10.1007/s10482-018-1040-x
Clausen, M.R. and Mortensen, P.B., 1995. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 37: 684-689.
'Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis ' () 37 Gut : 684 -689 .
Cobo, E.R., Kissoon-Singh, V., Moreau, F., Holani, R. and Chadee, K., 2017. MUC2 mucin and butyrate contribute to the synthesis of the antimicrobial peptide cathelicidin in response to Entamoeba histolytica- and dextran sodium sulfate-induced colitis. Infection and Immunity 85: e00905-16.
'MUC2 mucin and butyrate contribute to the synthesis of the antimicrobial peptide cathelicidin in response to Entamoeba histolytica- and dextran sodium sulfate-induced colitis ' () 85 Infection and Immunity : e00905 -16 .
Coxam, V., 2007. Current data with inulin-type fructans and calcium, targeting bone health in adults. Journal of Nutrition 137: 2527S-2533S. https://doi.org/10.1093/jn/137.11.2527S
Cummings, J.H. and MacFarlane, G.T., 1997. Colonic microflora: nutrition and health. Nutrition 13: 476-478. https://doi.org/10.1016/S0899-9007(97)00114-7
Cummings, J.H., Pomare, E.W., Branch, H.W.J., Naylor, C.P.E. and MacFarlane, G.T., 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221-1227. https://doi.org/10.1136/gut.28.10.1221
Da Silva, H.E., Teterina, A., Comelli, E.M., Taibi, A., Arendt, B.M., Fischer, S.E., Lou, W. and Allard, J.P., 2018. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Scientific Reports 8: 1466. https://doi.org/10.1038/s41598-018-19753-9
Darzi, J., Frost, G.S. and Robertson, M.D., 2012. Effects of a novel propionate-rich sourdough bread on appetite and food intake. European Journal of Clinical Nutrition 66: 789-794. https://doi.org/10.1038/ejcn.2012.1
Dass, N.B., John, A.K., Bassil, A.K., Crumbley, C.W., Shehee, W.R., Maurio, F.P., Moore, G.B., Taylor, C.M. and Sanger, G.J., 2007. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterology and Motility 19: 66-74. https://doi.org/10.1111/j.1365-2982.2006.00853.x
Davie, J.R., 2003. Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition 133: 2485S-2493S.
'Inhibition of histone deacetylase activity by butyrate ' () 133 Journal of Nutrition : 2485S -2493S .
De Preter, V., Geboes, K.P., Bulteel, V., Vandermeulen, G., Suenaert, P., Rutgeerts, P. and Verbeke, K., 2011. Kinetics of butyrate metabolism in the normal colon and in ulcerative colitis: the effects of substrate concentration and carnitine on the beta-oxidation pathway. Alimentary Pharmacology & Therapeutics 34: 526-532.
'Kinetics of butyrate metabolism in the normal colon and in ulcerative colitis: the effects of substrate concentration and carnitine on the beta-oxidation pathway ' () 34 Alimentary Pharmacology & Therapeutics : 526 -532 .
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F. and Mithieux, G., 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156: 84-96. https://doi.org/10.1016/j.cell.2013.12.016
De Vadder, F., Plessier, F., Gautier-Stein, A. and Mithieux, G., 2015. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis. Neurogastroenterology and Motility 27: 443-448. https://doi.org/10.1111/nmo.12508
DeFronzo, R.A., Jacot, E., Jequier, E., Maeder, E., Wahren, J. and Felber, J.P., 1981. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30: 1000-1007.
'The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization ' () 30 Diabetes : 1000 -1007 .
Dehghan, P., Farhangi, M.A., Tavakoli, F., Aliasgarzadeh, A. and Akbari, A.M., 2016. Impact of prebiotic supplementation on T-cell subsets and their related cytokines, anthropometric features and blood pressure in patients with type 2 diabetes mellitus: a randomized placebo-controlled trial. Complementary Therapies in Medicine 24: 96-102. https://doi.org/10.1016/j.ctim.2015.12.010
Dehghan, P., Pourghassem Gargari, B. and Asgharijafarabadi, M., 2013. Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promotion Perspectives 3: 55-63. https://doi.org/10.5681/hpp.2013.007
Den Besten, G., Bleeker, A., Gerding, A., Van Eunen, K., Havinga, R., Van Dijk, T.H., Oosterveer, M.H., Jonker, J.W., Groen, A.K. and Reijngoud, D.-J., 2015. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64: 2398-2408. https://doi.org/10.2337/db14-1213.
Den Besten, G., Lange, K., Havinga, R., Van Dijk, T.H., Gerding, A., Van Eunen, K., Muller, M., Groen, A.K., Hooiveld, G.J., Bakker, B.M. and Reijngoud, D.J., 2013. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. American Journal of Physiology – Gastrointestinal and Liver Physiology 305: G900-910. https://doi.org/10.1152/ajpgi.00265.2013
Deroover, L., Verspreet, J., Luypaerts, A., Vandermeulen, G., Courtin, C.M. and Verbeke, K., 2017. Wheat bran does not affect postprandial plasma short-chain fatty acids from 13C-inulin fermentation in healthy subjects. Nutrients 9: 83. https://doi.org/10.3390/nu9010083
Dewulf, E.M., Cani, P.D., Claus, S.P., Fuentes, S., Puylaert, P.G.B., Neyrinck, A.M., Bindels, L.B., De Vos, W.M., Gibson, G.R. and Thissen, J.P., 2013. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62: 1112-1121.
'Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women ' () 62 Gut : 1112 -1121 .
Duncan, S.H., Belenguer, A., Holtrop, G., Johnstone, A.M., Flint, H.J. and Lobley, G.E., 2007. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology 73: 1073-1078. https://doi.org/10.1128/AEM.02340-06
Duncan, S.H., Louis, P. and Flint, H.J., 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology 70: 5810-5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004
Dutzan, N., Abusleme, L., Bridgeman, H., Greenwell-Wild, T., Zangerle-Murray, T., Fife, M.E., Bouladoux, N., Linley, H., Brenchley, L., Wemyss, K., Calderon, G., Hong, B.-Y., Break, T.J., Bowdish, D.M.E., Lionakis, M.S., Jones, S.A., Trinchieri, G., Diaz, P.I., Belkaid, Y., Konkel, J.E. and Moutsopoulos, N.M., 2017. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46: 133-147. https://doi.org/10.1016/j.immuni.2016.12.010
Elamin, E.E., Masclee, A.A., Dekker, J., Pieters, H.J. and Jonkers, D.M., 2013. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in caco-2 cell monolayers. Journal of Nutrition 143: 1872-1881. https://doi.org/10.3945/jn.113.179549
Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., Kurilshikov, A., Bonder, M.J., Valles-Colomer, M., Vandeputte, D., Tito, R.Y., Chaffron, S., Rymenans, L., Verspecht, C., De Sutter, L., Lima-Mendez, G., D’hoe, K., Jonckheere, K., Homola, D., Garcia, R., Tigchelaar, E.F., Eeckhaudt, L., Fu, J., Henckaerts, L., Zhernakova, A., Wijmenga, C. and Raes, J., 2016. Population-level analysis of gut microbiome variation. Science 352: 560-564.
'Population-level analysis of gut microbiome variation ' () 352 Science : 560 -564 .
Falony, G., Vlachou, A., Verbrugghe, K. and De Vuyst, L., 2006. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Applied and Environmental Microbiology 72: 7835-7841. https://doi.org/10.1128/AEM.01296-06
Fernandes, J., Vogt, J. and Wolever, T.M.S., 2012. Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. European Journal of Clinical Nutrition 66: 1029-1034.
'Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans ' () 66 European Journal of Clinical Nutrition : 1029 -1034 .
Ferreira, T.M., Leonel, A.J., Melo, M.A., Santos, R.R., Cara, D.C., Cardoso, V.N., Correia, M.I. and Alvarez-Leite, J.I., 2012. Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-fluorouracil administration. Lipids 47: 669-678. https://doi.org/10.1007/s11745-012-3680-3
Finnie, I.A., Dwarakanath, A.D., Taylor, B.A. and Rhodes, J.M., 1995. Colonic mucin synthesis is increased by sodium butyrate. Gut 36: 93-99.
'Colonic mucin synthesis is increased by sodium butyrate ' () 36 Gut : 93 -99 .
Freeland, K.R. and Wolever, T.M., 2010. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. British Journal of Nutrition 103: 460-466.
'Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha ' () 103 British Journal of Nutrition : 460 -466 .
Frost, G., Sleeth, M.L., Sahuri-arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J.R., Gibson, G., Viardot, A., Morrison, D., Thomas, E.L. and Bell, J.D., 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5: 1-11. https://doi.org/10.1038/ncomms4611
Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M., Eubanks, S., Harris, M., Pappas, T.N. and Takahashi, T., 2003. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 284: R1269-R1276. https://doi.org/10.1152/ajpregu.00442.2002
Fukushima, A., Aizaki, Y. and Sakuma, K., 2009. Short-chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and caco-2 cells. Journal of Nutrition 139: 20-25. https://doi.org/10.3945/jn.108.096230
Fukushima, A., Aizaki, Y. and Sakuma, K., 2012. Short-chain fatty acids increase the level of calbindin-D9k messenger RNA in caco-2 cells. Journal of Nutritional Science and Vitaminology 58: 287-291. https://doi.org/10.3177/jnsv.58.287
Fushimi, T., Tayama, K., Fukaya, M., Kitakoshi, K., Nakai, N., Tsukamoto, Y. and Sato, Y., 2001. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. Journal of Nutrition 131: 1973-1977.
'Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats ' () 131 Journal of Nutrition : 1973 -1977 .
Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T. and Ye, J., 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58: 1509-1509.
'Butyrate improves insulin sensitivity and increases energy expenditure in mice ' () 58 Diabetes : 1509 -1509 .
Gaudier, E., Forestier, L., Gouyer, V., Huet, G., Julien, R. and Hoebler, C., 2004. Butyrate regulation of glycosylation-related gene expression: evidence for galectin-1 upregulation in human intestinal epithelial goblet cells. Biochemical and Biophysical Research Communications 325: 1044-1051. https://doi.org/10.1016/j.bbrc.2004.10.141
Gaudier, E., Rival, M., Buisine, M.P., Robineau, I. and Hoebler, C., 2009. Butyrate enemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon. Physiological Research 58: 111-119.
'Butyrate enemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon ' () 58 Physiological Research : 111 -119 .
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. and Reid, G., 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology 14: 491-502. https://doi.org/10.1038/nrgastro.2017.75
Gill, R.K., Saksena, S., Alrefai, W.A., Sarwar, Z., Goldstein, J.L., Carroll, R.E., Ramaswamy, K. and Dudeja, P.K., 2005. Expression and membrane localization of MCT isoforms along the length of the human intestine. American Journal of Physiology – Cell Physiology 289: C846-C852. https://doi.org/10.1152/ajpcell.00112.2005
Goverse, G., Molenaar, R., Macia, L., Tan, J., Erkelens, M.N., Konijn, T., Knippenberg, M., Cook, E.C.L., Hanekamp, D., Veldhoen, M., Hartog, A., Roeselers, G., Mackay, C.R. and Mebius, R.E., 2017. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. Journal of Immunology 198: 2172 LP-2181.
'Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells ' () 198 Journal of Immunology : 2172 -LP-2181 .
Grootaert, C., Van Den Abbeele, P., Marzorati, M., Broekaert, W.F., Courtin, C.M., Delcour, J.A., Verstraete, W. and Van De Wiele, T., 2009. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology 69: 231-242. https://doi.org/10.1111/j.1574-6941.2009.00712.x
Guo, C., Xie, S., Chi, Z., Zhang, J., Liu, Y., Zhang, L., Zheng, M., Zhang, X., Xia, D., Ke, Y., Lu, L. and Wang, D., 2016. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45: 802-816. https://doi.org/10.1016/j.immuni.2016.09.008
Gupta, N., Martin, P.M., Prasad, P.D. and Ganapathyet, V., 2006. SLC5A8(SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Science 78: 2419-2425.
'SLC5A8(SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter ' () 78 Life Science : 2419 -2425 .
Gurav, A., Sivaprakasam, S., Bhutia, Yangzom, D., Boettger, T., Singh, N. and Ganapathy, V., 2015. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochemical Journal 469: 267-278. https://doi.org/10.1042/bj20150242
Gutierrez-Repiso, C., Garcia-Serrano, S., Moreno-Ruiz, F.J., Alcain-Martinez, G., Rodriguez-Pacheco, F. and Garcia-Fuentes, E., 2017. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass. Surgery for Obesity and Related Diseases 13: 623-630. https://doi.org/10.1016/j.soard.2016.11.021
Hald, S., Schioldan, A.G., Moore, M.E., Dige, A., Lærke, H.N., Agnholt, J., Bach Knudsen, K.E., Hermansen, K., Marco, M.L., Gregersen, S. and Dahlerup, J.F., 2016. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS ONE 11: e0159223. https://doi.org/10.1371/journal.pone.0159223
Halestrap, A.P. and Meredith, D., 2004. The SLC16 gene family – from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Archiv European Journal of Physiology 447: 619-628. https://doi.org/10.1007/s00424-003-1067-2
Hallert, C., Björck, I., Nyman, M., Pousette, A., Grännö, C. and Svensson, H., 2003. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflammatory Bowel Diseases 9: 116-121.
'Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study ' () 9 Inflammatory Bowel Diseases : 116 -121 .
Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.J., 2008. Review article: the role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics 27: 104-119. https://doi.org/10.1111/j.1365-2036.2007.03562.x
Hamer, H.M., Jonkers, D.M.A.E., Bast, A., Vanhoutvin, S.A.L.W., Fischer, M.A.J.G., Kodde, A., Troost, F.J., Venema, K. and Brummer, R.-J.M., 2009. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clinical Nutrition 28: 88-93. https://doi.org/10.1016/j.clnu.2008.11.002
Hamer, H.M., Jonkers, D.M.A.E., Vanhoutvin, S.A.L.W., Troost, F.J., Rijkers, G., De Bruine, A., Bast, A., Venema, K. and Brummer, R.-J.M., 2010. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clinical Nutrition 29: 738-744. https://doi.org/10.1016/j.clnu.2010.04.002
Han, X., Song, H., Wang, Y., Sheng, Y. and Chen, J., 2015. Sodium butyrate protects the intestinal barrier function in peritonitic mice. International Journal of Clinical and Experimental Medicine 8: 4000-4007.
'Sodium butyrate protects the intestinal barrier function in peritonitic mice ' () 8 International Journal of Clinical and Experimental Medicine : 4000 -4007 .
Harig, J.M., Ng, E.K., Dudeja, P.K., Brasitus, T.A. and Ramaswamy, K., 1996. Transport of n-butyrate into human colonic luminal membrane vesicles. American Journal of Physiology – Gastrointestinal and Liver Physiology 271: G415-G422.
'Transport of n-butyrate into human colonic luminal membrane vesicles ' () 271 American Journal of Physiology – Gastrointestinal and Liver Physiology : G415 -G422 .
Harig, J.M., Soergel, K.H., Komorowski, R.A. and Wood, C.M., 1989. Treatment of diversion colitis with short-chain-fatty acid irrigation. New England Journal of Medicine 320: 23-28. https://doi.org/10.1056/nejm198901053200105
Hase, K., Eckmann, L., Leopard, J.D., Varki, N. and Kagnoff, M.F., 2002. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infection and Immunity 70: 953-963. https://doi.org/10.1128/iai.70.2.953-963.2002
Hatayama, H., Iwashita, J., Kuwajima, A. and Abe, T., 2007. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochemical and Biophysical Research Communications 356: 599-603. https://doi.org/10.1016/j.bbrc.2007.03.025
Hattori, M., Kondo, T., Kishi, M. and Yamagami, K., 2010. A single oral administration of acetic acid increased energy expenditure in C57BL/6J mice. Bioscience, Biotechnology, and Biochemistry 74: 2158-2159. https://doi.org/10.1271/bbb.100486
Hayes, M.T., Foo, J., Besic, V., Tychinskaya, Y. and Stubbs, R.S., 2011. Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass? Obesity Surgery 21: 759-762. https://doi.org/10.1007/s11695-011-0380-7
Healey, G., Murphy, R., Butts, C., Brough, L., Whelan, K. and Coad, J., 2018. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. British Journal of Nutrition 119: 176-189. https://doi.org/10.1017/S0007114517003440
Henagan, T.M., Stefanska, B., Fang, Z., Navard, A.M., Ye, J., Lenard, N.R. and Devarshi, P.P., 2015. Sodium butyrate epigenetically modulates skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. BJP 172: 2782-2798. https://doi.org/10.1111/bph.13058
Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J., Camporez, J.P., Shulman, G.I., Gordon, J.I., Hoffman, H.M. and Flavell, R.A., 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482: 179-185. https://doi.org/10.1038/nature10809
Henson, M.A. and Phalak, P., 2017. Byproduct cross feeding and community stability in an in silico biofilm model of the gut microbiome. Processes 5: 13. https://doi.org/10.3390/pr5010013
Hoek, M.J.A. and Merks, R.M.H., 2017. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Systems Biology 11: 56-56. https://doi.org/10.1186/s12918-017-0430-4
Hong, J., Jia, Y., Pan, S., Jia, L., Li, H. and Han, Z., 2016. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 7: 56071-56082.
'Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice ' () 7 Oncotarget : 56071 -56082 .
Hong, Y.H., Nishimura, Y., Hishikawa, D., Tsuzuki, H., Miyahara, H., Gotoh, C., Choi, K.C., Feng, D.D., Chen, C. and Lee, H.G., 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146: 5092-5092.
'Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43 ' () 146 Endocrinology : 5092 -5092 .
Hornung, B., Martins dos Santos, V.A.P., Smidt, H. and Schaap, P.J., 2018. Studying microbial functionality within the gut ecosystem by systems biology. Genes and Nutrition 13: 5. https://doi.org/10.1186/s12263-018-0594-6
Hu, E.D., Chen, D.Z., Wu, J.L., Lu, F.B., Chen, L., Zheng, M.H., Li, H., Huang, Y., Li, J., Jin, X.Y., Gong, Y.W., Lin, Z., Wang, X.D., Xu, L.M. and Chen, Y.P., 2018. High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cellular Immunology 328: 24-32. https://doi.org/10.1016/j.cellimm.2018.03.003
Huang, C., Song, P., Fan, P., Hou, C., Thacker, P. and Ma, X., 2015. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. Journal of Nutrition 145: 2774-2780. https://doi.org/10.3945/jn.115.217406
Hung, T.V. and Suzuki, T., 2016. Dietary fermentable fiber reduces intestinal barrier defects and inflammation in colitic mice. Journal of Nutrition 146: 1970-1979. https://doi.org/10.3945/jn.116.232538
Hung, T.V. and Suzuki, T., 2018. Dietary fermentable fibers attenuate chronic kidney disease in mice by protecting the intestinal barrier. Journal of Nutrition 148: 552-561. https://doi.org/10.1093/jn/nxy008
Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S. and Salminen, A., 2004. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. British Journal of Pharmacology 141: 874-880. https://doi.org/10.1038/sj.bjp.0705682
Inan, M.S., Rasoulpour, R.J., Yin, L., Hubbard, A.K., Rosenberg, D.W. and Giardina, C., 2000. The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology 118: 724-734. https://doi.org/10.1016/S0016-5085(00)70142-9
Iraporda, C., Errea, A., Romanin, D.E., Cayet, D., Pereyra, E., Pignataro, O., Sirard, J.C., Garrote, G.L., Abraham, A.G. and Rumbo, M., 2015. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220: 1161-1169. https://doi.org/10.1016/j.imbio.2015.06.004
Jain, P.K., McNaught, C.E., Anderson, A.D., MacFie, J. and Mitchell, C.J., 2004. Influence of synbiotic containing Lactobacillus acidophilus La5, Bifidobacterium lactis Bb 12, Streptococcus thermophilus, Lactobacillus bulgaricus and oligofructose on gut barrier function and sepsis in critically ill patients: a randomised controlled trial. Clinical Nutrition 23: 467-475. https://doi.org/10.1016/j.clnu.2003.12.002
Jia, Y., Hong, J., Li, H., Hu, Y., Jia, L., Cai, D. and Zhao, R., 2016. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated beta3-adrenergic receptor activation in high-fat diet-induced obese mice. Experimental Physiology 102: 273-281. https://doi.org/10.1113/EP086114
Jiang, L., Krystal, J.H., Mason, G.F., Jiang, L., Gulanski, B.I., Feyter, H.M.D., Weinzimer, S.A., Pittman, B., Guidone, E., Koretski, J., Harman, S., Petrakis, I.L., Krystal, J.H. and Mason, G.F., 2013. Increased brain uptake and oxidation of acetate in heavy drinkers find the latest version: increased brain uptake and oxidation of acetate in heavy drinkers. Journal of Clinical Investigation 123: 1605-1614. https://doi.org/10.1172/JCI65153.by
Jocken, J.W., Hoebers, N.T., Van der Beek, C.M., Essers, Y.P., Blaak, E.E. and Canfora, E., 2017. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Frontiers in Endocrinology 8: 372.
'Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model ' () 8 Frontiers in Endocrinology : 372 .
Jouet, P., Moussata, D., Duboc, H., Boschetti, G., Attar, A., Gorbatchef, C., Sabate, J.M., Coffin, B. and Flourie, B., 2013. Effect of short-chain fatty acids and acidification on the phasic and tonic motor activity of the human colon. Neurogastroenterology and Motility 25: 943-949. https://doi.org/10.1111/nmo.12212
Jung, T.-H., Park, J.H., Jeon, W.-M. and Han, K.-S., 2015. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutrition Research and Practice 9: 343-349. https://doi.org/10.4162/nrp.2015.9.4.343
Kaisar, M.M.M., Pelgrom, L.R., Van der Ham, A.J., Yazdanbakhsh, M. and Everts, B., 2017. Butyrate conditions human dendritic cells to prime Type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Frontiers in Immunology 8: 1429-1429.
'Butyrate conditions human dendritic cells to prime Type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling ' () 8 Frontiers in Immunology : 1429 -1429 .
Kang, C., Wang, B., Kaliannan, K., Wang, X., Lang, H., Hui, S., Huang, L., Zhang, Y., Zhou, M., Chen, M., Mi, M., Godoy-Vitorino, F. and Dominguez Bello, M.G., 2017. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. mBio 8. https://doi.org/10.1128/mBio.00470-17
Karaki, S., Mitsui, R., Hayashi, H., Kato, I., Sugiya, H., Iwanaga, T., Furness, J.B. and Kuwahara, A., 2006. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Research 324: 353-360. https://doi.org/10.1007/s00441-005-0140-x
Kashimura, J., Kimura, M. and Itokawa, Y., 1996. The effects of isomaltulose, isomalt, and isomaltulose-based oligomers on mineral absorption and retention. Biological Trace Element Research 54: 239-250. https://doi.org/10.1007/bf02784435
Kelly, C.J., Zheng, L., Campbell, E.L., Saeedi, B., Scholz, C.C., Bayless, A.J., Wilson, K.E., Glover, L.E., Kominsky, D.J., Magnuson, A., Weir, T.L., Ehrentraut, S.F., Pickel, C., Kuhn, K.A., Lanis, J.M., Nguyen, V., Taylor, C.T. and Colgan, S.P., 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17: 662-671. https://doi.org/10.1016/j.chom.2015.03.005
Kien, C.L., Kepner, J., Grotjohn, K., Ault, K. and McClead, R.E., 1992. Stable isotope model for estimating colonic acetate production in premature infants. Gastroenterology 102: 1458-1466. https://doi.org/10.1016/0016-5085(92)91702-6
Kim, M.H., Kang, S.G., Park, J.H., Yanagisawa, M. and Kim, C.H., 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145: 396-406. https://doi.org/10.1053/j.gastro.2013.04.056
Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A. and Miyauchi, S., 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41. Proceedings of the National Academy of Sciences of the USA 108: 8030-8035. https://doi.org/10.1073/pnas.1016088108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1016088108
Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H. and Tsujimoto, G., 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 4: 1-12. https://doi.org/10.1038/ncomms2852
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Backhed, F., 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165: 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041
Kondo, T., Kishi, M., Fushimi, T. and Kaga, T., 2009. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. Journal of Agricultural and Food Chemistry 57: 5982-5986.
'Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation ' () 57 Journal of Agricultural and Food Chemistry : 5982 -5986 .
Kootte, R.S., Levin, E., Salojärvi, J., Smits, L.P., Hartstra, A.V., Udayappan, S.D., Hermes, G., Bouter, K.E., Koopen, A.M., Holst, J.J., Knop, F.K., Blaak, E.E., Zhao, J., Smidt, H., Harms, A.C., Hankemeijer, T., Bergman, J.J.G.H.M., Romijn, H.A., Schaap, F.G., Olde Damink, S.W.M., Ackermans, M.T., Dallinga-Thie, G.M., Zoetendal, E., De Vos, W.M., Serlie, M.J., Stroes, E.S.G., Groen, A.K. and Nieuwdorp, M., 2017. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism 26: 611-619. https://doi.org/10.1016/j.cmet.2017.09.008
Kovatcheva-Datchary, P., Egert, M., Maathuis, A., Rajilić-Stojanović, M., De Graaf, A.A., Smidt, H., De Vos, W.M. and Venema, K., 2009. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environmental Microbiology 11: 914-926. https://doi.org/10.1111/j.1462-2920.2008.01815.x
Laurent, C., Simoneau, C., Marks, L., Braschi, S., Champ, M., Charbonnel, B. and Krempf, M., 1995. Effect of acetate and propionate on fasting hepatic glucose production in humans. European Journal of Clinical Nutrition 49: 484.
'Effect of acetate and propionate on fasting hepatic glucose production in humans ' () 49 European Journal of Clinical Nutrition : 484 .
Le Bourgot, C., Apper, E., Blat, S. and Respondek, F., 2018. Fructo-oligosaccharides and glucose homeostasis: a systematic review and meta-analysis in animal models. Nutrition and Metabolism 15: 9. https://doi.org/10.1186/s12986-018-0245-3
Lengacher, S., Nehiri-Sitayeb, T., Steiner, N., Carneiro, L., Favrod, C., Preitner, F., Thorens, B., Stehle, J.C., Dix, L., Pralong, F., Magistretti, P.J. and Pellerin, L., 2013. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS ONE 8: e82505. https://doi.org/10.1371/journal.pone.0082505
Lewis, S.J. and Heaton, K.W., 1997. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 41: 245-251. https://doi.org/10.1136/gut.41.2.245
Li, X., Chen, H., Guan, Y., Li, X., Lei, L., Liu, J., Yin, L., Liu, G. and Wang, Z., 2013. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. PLoS ONE 8: e67880-e67880.
'Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes ' () 8 PLoS ONE : e67880 -e67880 .
Li, Z., Yi, C.-x., Katiraei, S., Kooijman, S., Zhou, E., Chung, C.K., Gao, Y., Heuvel, J.K.V.D., Meijer, O.C., Berbée, J.F.P., Heijink, M., Giera, M., Dijk, K.W.V., Groen, A.K., Rensen, P.C.N. and Wang, Y., 2017. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67: 1269-1279. https://doi.org/10.1136/gutjnl-2017-314050
Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M.A., Amann, M., Anderson, H.R., Andrews, K.G., Aryee, M., Atkinson, C., Bacchus, L.J., Bahalim, A.N., Balakrishnan, K., Balmes, J., Barker-Collo, S., Baxter, A., Bell, M.L., Blore, J.D., Blyth, F., Bonner, C., Borges, G., Bourne, R., Boussinesq, M., Brauer, M., Brooks, P., Bruce, N.G., Brunekreef, B., Bryan-Hancock, C., Bucello, C., Buchbinder, R., Bull, F., Burnett, R.T., Byers, T.E., Calabria, B., Carapetis, J., Carnahan, E., Chafe, Z., Charlson, F., Chen, H., Chen, J.S., Cheng, A.T.-A., Child, J.C., Cohen, A., Colson, K.E., Cowie, B.C., Darby, S., Darling, S., Davis, A., Degenhardt, L., Dentener, F., Des Jarlais, D.C., Devries, K., Dherani, M., Ding, E.L., Dorsey, E.R., Driscoll, T., Edmond, K., Ali, S.E., Engell, R.E., Erwin, P.J., Fahimi, S., Falder, G., Farzadfar, F., Ferrari, A., Finucane, M.M., Flaxman, S., Fowkes, F.G.R., Freedman, G., Freeman, M.K., Gakidou, E., Ghosh, S., Giovannucci, E., Gmel, G., Graham, K., Grainger, R., Grant, B., Gunnell, D., Gutierrez, H.R., Hall, W., Hoek, H.W., Hogan, A., Hosgood, H.D., Hoy, D., Hu, H., Hubbell, B.J., Hutchings, S.J., Ibeanusi, S.E., Jacklyn, G.L., Jasrasaria, R., Jonas, J.B., Kan, H., Kanis, J.A., Kassebaum, N., Kawakami, N., Khang, Y.-H., Khatibzadeh, S., Khoo, J.-P., Kok, C., Laden, F., Lalloo, R., Lan, Q., Lathlean, T., Leasher, J.L., Leigh, J., Li, Y., Lin, J.K., Lipshultz, S.E., London, S., Lozano, R., Lu, Y., Mak, J., Malekzadeh, R., Mallinger, L., Marcenes, W., March, L., Marks, R., Martin, R., McGale, P., McGrath, J., Mehta, S., Memish, Z.A., Mensah, G.A., Merriman, T.R., Micha, R., Michaud, C., Mishra, V., Hanafiah, K.M., Mokdad, A.A., Morawska, L., Mozaffarian, D., Murphy, T., Naghavi, M., Neal, B., Nelson, P.K., Nolla, J.M., Norman, R., Olives, C., Omer, S.B., Orchard, J., Osborne, R., Ostro, B., Page, A., Pandey, K.D., Parry, C.D.H., Passmore, E., Patra, J., Pearce, N., Pelizzari, P.M., Petzold, M., Phillips, M.R., Pope, D., Pope, C.A., Powles, J., Rao, M., Razavi, H., Rehfuess, E.A., Rehm, J.T., Ritz, B., Rivara, F.P., Roberts, T., Robinson, C., Rodriguez-Portales, J.A., Romieu, I., Room, R., Rosenfeld, L.C., Roy, A., Rushton, L., Salomon, J.A., Sampson, U., Sanchez-Riera, L., Sanman, E., Sapkota, A., Seedat, S., Shi, P., Shield, K., Shivakoti, R., Singh, G.M., Sleet, D.A., Smith, E., Smith, K.R., Stapelberg, N.J.C., Steenland, K., Stöckl, H., Stovner, L.J., Straif, K., Straney, L., Thurston, G.D., Tran, J.H., Van Dingenen, R., van Donkelaar, A., Veerman, J.L., Vijayakumar, L., Weintraub, R., Weissman, M.M., White, R.A., Whiteford, H., Wiersma, S.T., Wilkinson, J.D., Williams, H.C., Williams, W., Wilson, N., Woolf, A.D., Yip, P., Zielinski, J.M., Lopez, A.D., Murray, C.J.L. and Ezzati, M., 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380: 2224-2260. https://doi.org/10.1016/s0140-6736(12)61766-8
Lin, H.V., Frassetto Jr, A., E.J.K., Nawrocki, A.R., Lu, M.M., Kosinski, J.R., Hubert, J.A., Szeto, D., Yao, X., Forrest, G. and Marsh, D.J., 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7: 1-9. https://doi.org/10.1371/journal.pone.0035240
Liu, F., Li, P., Chen, M., Luo, Y., Prabhakar, M., Zheng, H., He, Y., Qi, Q., Long, H., Zhang, Y., Sheng, H. and Zhou, H., 2017. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Science Reports 7: 11789. https://doi.org/10.1038/s41598-017-10722-2
Liu, L., Li, L., Min, J., Wang, J., Wu, H., Zeng, Y., Chen, S. and Chu, Z., 2012. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cellular Immunology 277: 66-73. https://doi.org/10.1016/j.cellimm.2012.05.011
Louis, P., Duncan, S.H., McCrae, S.I., Millar, J., Jackson, M.S. and Flint, H.J., 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. Journal of Bacteriology 186: 2099-2106. https://doi.org/10.1128/JB.186.7.2099-2106.2004
Louis, P., Young, P., Holtrop, G. and Flint, H.J., 2010. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environmental Microbiology 12: 304-314. https://doi.org/10.1111/j.1462-2920.2009.02066.x
Lu, Y., Fan, C., Li, P., Lu, Y., Chang, X. and Qi, K., 2016. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating g protein-coupled receptors and gut microbiota. Nature 3: 1-13. https://doi.org/10.1038/srep37589
Lutz, T. and Scharrer, E., 1991. Effect of short-chain fatty acids on calcium absorption by the rat colon. Experimental Physiology 76: 615-618. https://doi.org/10.1113/expphysiol.1991.sp003530
MacFarlane, G.T. and Gibson, G.R., 1995. Microbiological aspects of the production of short-chain fatty acids in the large bowel. In: Cummings, J.H., Rombeau, J.L. and Sakata, S. (eds.) Physiological and clinical aspects of short chain fatty acid metabolism. Cambridge University Press, Cambridge, UK, pp. 87.
'Microbiological aspects of the production of short-chain fatty acids in the large bowel ', () 87 .
MacFarlane, G.T. and MacFarlane, S., 1997. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scandinavian Journal of Gastroenterology, Suppl. 32: 3-9.
'Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria ' () 32 Scandinavian Journal of Gastroenterology : 3 -9 .
MacFarlane, G.T., Gibson, G.R. and Cummings, J.H., 1992. Comparison of fermentation reactions in different regions of the human colon. Journal of Applied Bacteriology 72: 57-64. https://doi.org/10.1111/j.1365-2672.1992.tb04882.x
Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A.N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M.M., Moore, R.J., Flavell, R.A., Fagarasan, S. and Mackay, C.R., 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications 6: 6734-6734.
'Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome ' () 6 Nature Communications : 6734 -6734 .
Martínez, I., Kim, J., Duffy, P.R., Schlegel, V.L. and Walter, J., 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 5(11): e15046.
'Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects ' () 5 PLoS ONE : e15046 .
Mascolo, N., Rajendran, V.M. and Binder, H.J., 1991. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology 101: 331-338. https://doi.org/10.1016/0016-5085(91)90008-9
Masui, R., Sasaki, M., Funaki, Y., Ogasawara, N., Mizuno, M., Iida, A., Izawa, S., Kondo, Y., Ito, Y., Tamura, Y., Yanamoto, K., Noda, H., Tanabe, A., Okaniwa, N., Yamaguchi, Y., Iwamoto, T. and Kasugai, K., 2013. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflammatory Bowel Diseases 19: 2848-2856. https://doi.org/10.1097/01.MIB.0000435444.14860.ea
Maurer, J.M., Schellekens, R.C.A., Van Rieke, H.M., Wanke, C., Iordanov, V., Stellaard, F., Wutzke, K.D., Dijkstra, G., Van der Zee, M., Woerdenbag, H.J., Frijlink, H.W. and Kosterink, J.G.W., 2015. Gastrointestinal pH and transit time profiling in healthy volunteers using the IntelliCap system confirms ileo-colonic release of ColoPulse tablets. PLoS ONE 10: e0129076. https://doi.org/10.1371/journal.pone.0129076
McBurney, M.I. and Thompson, L.U., 1989. In vitro fermentabilities of purified fiber supplements. Journal of Food Science 54: 347-350. https://doi.org/10.1111/j.1365-2621.1989.tb03077.x
McKenzie, C., Tan, J., Macia, L. and Mackay, C.R., 2017. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunological Reviews 278: 277-295. https://doi.org/10.1111/imr.12556
McLoughlin, R.F., Berthon, B.S., Jensen, M.E., Baines, K.J. and Wood, L.G., 2017. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. American Journal of Clinical Nutrition 106: 930-945. https://doi.org/10.3945/ajcn.117.156265
McNabney, M.S. and Henagan, M.T., 2017. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9: 1348. https://doi.org/10.3390/nu9121348
McNeil, N.I., 1984. The contribution of the large intestine to energy supplies in man. American Journal of Clinical Nutrition 39: 338-342.
'The contribution of the large intestine to energy supplies in man ' () 39 American Journal of Clinical Nutrition : 338 -342 .
McNelis, J.C., Lee, Y.S., Mayoral, R., Van der Kant, R., Johnson, A.M.F., Wollam, J. and Olefsky, J.M., 2015. GPR43 potentiates β-cell function in obesity. Diabetes 64: 3203-3217.
'GPR43 potentiates β-cell function in obesity ' () 64 Diabetes : 3203 -3217 .
Miao, W., Wu, X., Wang, K., Wang, W., Wang, Y., Li, Z., Liu, J., Li, L. and Peng, L., 2016. Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCbeta2. International Journal of Molecular Science 17: 1696. https://doi.org/10.3390/ijms17101696
Millard, A.L., Mertes, P.M., Ittelet, D., Villard, F., Jeannesson, P. and Bernard, J., 2002. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clinical and Experimental Immunology 130: 245-255. https://doi.org/10.1046/j.0009-9104.2002.01977.x
Mineo, H., Hara, H. and Tomita, F., 2001. Short-chain fatty acids enhance diffusional Ca transport in the epithelium of the rat cecum and colon. Life Sciences 69: 517-526.
'Short-chain fatty acids enhance diffusional Ca transport in the epithelium of the rat cecum and colon ' () 69 Life Sciences : 517 -526 .
Mithieux, G., 2001. New data and concepts on glutamine and glucose metabolism in the gut. Current Opinion in Clinical Nutrition and Metabolic Care 4: 267-271.
'New data and concepts on glutamine and glucose metabolism in the gut ' () 4 Current Opinion in Clinical Nutrition and Metabolic Care : 267 -271 .
Mithieux, G., 2012. Comment about intestinal gluconeogenesis after gastric bypass in human in relation with the paper by Hayes et al., Obes. Surg. 2011. Obesity Surgery 22: 1920-1922. https://doi.org/10.1007/s11695-012-0755-4
Moens, F., Weckx, S. and De Vuyst, L., 2016. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. International Journal of Food Microbiology 231: 76-85. https://doi.org/10.1016/j.ijfoodmicro.2016.05.015
Monk, J.M., Lepp, D., Wu, W., Pauls, K.P., Robinson, L.E. and Power, K.A., 2017. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. Journal of Nutritional Biochemistry 49: 89-100. https://doi.org/10.1016/j.jnutbio.2017.08.002
Morrison, D.J., Mackay, W.G., Edwards, C.A., Preston, T., Dodson, B. and Weaver, L.T., 2006. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? British Journal of Nutrition 96: 570-577. https://doi.org/10.1079/BJN20061853
Muller, M., Hermes, G.D.A., Canfora, E.E., Smidt, H., Masclee, A.A.M., Zoetendal, E.G. and Blaak, E.E., 2020. Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. The American Journal of Physiology: Gastrointestinal and Liver Physiology 318: G361-G369. https://doi.org/10.1152/ajpgi.00283.2019
Muñoz-Tamayo, R., Laroche, B., Walter, É., Doré, J., Duncan, S.H., Flint, H.J. and Leclerc, M., 2011. Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiology Ecology 76: 615-624. https://doi.org/10.1111/j.1574-6941.2011.01085.x
Nagashima, H. and Morio, Y., 2010. High-resolution nuclear magnetic resonance spectroscopic study of metabolites in the cerebrospinal fluid of patients with cervical myelopathy and lumbar radiculopathy. European Spine Journal 19: 1363-1368. https://doi.org/10.1007/s00586-010-1453-3
Nastasi, C., Candela, M., Bonefeld, C.M., Geisler, C., Hansen, M., Krejsgaard, T., Biagi, E., Andersen, M.H., Brigidi, P., Ødum, N., Litman, T. and Woetmann, A., 2015. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports 5: 16148-16148. https://doi.org/10.1038/srep16148
Neis, E.P.J.G., Van Eijk, H.M.H., Lenaerts, K., Olde Damink, S.W.M., Blaak, E.E., Dejong, C.H.C. and Rensen, S.S., 2018. Distal versus proximal intestinal short-chain fatty acid release in man. Gut 68: 764-765. https://doi.org/10.1136/gutjnl-2018-316161
Nurmi, J.T., Puolakkainen, P.A. and Rautonen, N.E., 2005. Bifidobacterium Lactis sp. 420 up-regulates cyclooxygenase (Cox)-1 and down-regulates Cox-2 gene expression in a Caco-2 cell culture model. Nutrition and Cancer 51: 83-92. https://doi.org/10.1207/s15327914nc5101_12
Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., Izumi, Y., Nishiumi, S., Yoshida, M., Usami, M. and Ikeda, M., 2013. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis 20: 425-442. https://doi.org/10.5551/jat.15065
Olguin, F., Araya, M., Hirsch, S., Brunser, O., Ayala, V., Rivera, R. and Gotteland, M., 2005. Prebiotic ingestion does not improve gastrointestinal barrier function in burn patients. Burns 31: 482-488. https://doi.org/10.1016/j.burns.2004.11.017
Park, J., Goergen, C.J., HogenEsch, H. and Kim, C.H., 2016. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis. The Journal of Immunology 196: 2388-2400. https://doi.org/10.4049/jimmunol.1502046
Park, J., Kim, M., Kang, S.G., Jannasch, A.H., Cooper, B., Patterson, J. and Kim, C.H., 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology 8: 80-93. https://doi.org/10.1038/mi.2014.44
Parnell, J.A. and Reimer, R.A., 2009. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. American Journal of Clinical Nutrition 89: 1751-1759.
'Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults ' () 89 American Journal of Clinical Nutrition : 1751 -1759 .
Pedersen, C., Gallagher, E., Horton, F., Ellis, R.J., Ijaz, U.Z., Wu, H., Jaiyeola, E., Diribe, O., Duparc, T., Cani, P.D., Gibson, G.R., Hinton, P., Wright, J., La Ragione, R. and Robertson, M.D., 2016. Host-microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. British Journal of Nutrition 116: 1869-1877. https://doi.org/10.1017/S0007114516004086
Pelaseyed, T., Bergström, J.H., Gustafsson, J.K., Ermund, A., Birchenough, G.M.H., Schütte, A., Van der Post, S., Svensson, F., Rodríguez-Piñeiro, A.M., Nyström, E.E.L., Wising, C., Johansson, M.E.V. and Hansson, G.C., 2014. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews 260: 8-20. https://doi.org/10.1111/imr.12182
Peng, L., Li, Z.R., Green, R.S., Holzman, I.R. and Lin, J., 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. Journal of Nutrition 139: 1619-1625. https://doi.org/10.3945/jn.109.104638
Perry, R.J., Peng, L., Barry, N.A. and Gary, W., 2016. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534: 213-217 https://doi.org/10.1038/nature18309
Peters, S.G., Pomare, E.W. and Fisher, C.A., 1992. Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut 33: 1249-1252. https://doi.org/10.1136/gut.33.9.1249
Pingitore, A., Chambers, E.S., Hill, T., Maldonado, I.R., Liu, B., Bewick, G., Morrison, D.J., Preston, T., Wallis, G.A. and Tedford, C., 2017. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes, Obesity and Metabolism 19: 257-265.
'The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro ' () 19 Diabetes, Obesity and Metabolism : 257 -265 .
Polyviou, T., Macdougall, K., Chambers, E.S., Viardot, A., Psichas, A., Jawaid, S., Harris, H.C. and Edwards, C.A., 2016. Alimentary pharmacology and therapeutics randomised clinical study: inulin short-chain fatty acid esters for targeted delivery of short-chain fatty acids to the human colon. Alimentary Pharmacology and Therapeutics 44(7): 662-672. https://doi.org/10.1111/apt.13749
Pouteau, E., Ferchaud-Roucher, V., Zair, Y., Paintin, M., Enslen, M., Auriou, N., Macé, K., Godin, J.-P., Ballèvre, O. and Krempf, M., 2010. Acetogenic fibers reduce fasting glucose turnover but not peripheral insulin resistance in metabolic syndrome patients. Clinical Nutrition 29: 801-807.
'Acetogenic fibers reduce fasting glucose turnover but not peripheral insulin resistance in metabolic syndrome patients ' () 29 Clinical Nutrition : 801 -807 .
Priyadarshini, M., Villa, S.R., Fuller, M., Wicksteed, B., Mackay, C.R., Alquier, T., Poitout, V., Mancebo, H., Mirmira, R.G. and Gilchrist, A., 2015. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Molecular Endocrinology 29: 1055-1066.
'An acetate-specific GPCR, FFAR2, regulates insulin secretion ' () 29 Molecular Endocrinology : 1055 -1066 .
Psichas, A., Sleeth, M.L., Murphy, K.G., Brooks, L., Bewick, G.A., Hanyaloglu, A.C., Ghatei, M.A., Bloom, S.R. and Frost, G., 2014. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity 39: 424-429. https://doi.org/10.1038/ijo.2014.153
Rabbani, G.H., Teka, T., Saha, S.K., Zaman, B., Majid, N., Khatun, M., Wahed, M.A. and Fuchs, G.J., 2004. Green banana and pectin improve small intestinal permeability and reduce fluid loss in Bangladeshi children with persistent diarrhea. Digestive Diseases and Sciences 49: 475-484. https://doi.org/10.1023/b:ddas.0000020507.25910.cf
Ramirez-Farias, C., Slezak, K., Fuller, Z., Duncan, A., Holtrop, G. and Louis, P., 2009. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British Journal of Nutrition 101: 541-550. https://doi.org/10.1017/S0007114508019880
Rao, M., Gao, C., Xu, L., Jiang, L., Zhu, J., Chen, G., Law, B.Y.K. and Xu, Y., 2019. Effect of inulin-type carbohydrates on insulin resistance in patients with Type 2 diabetes and obesity: a systematic review and meta-analysis. Journal of Diabetes Research: 5101423. https://doi.org/10.1155/2019/5101423
Raschka, L. and Daniel, H., 2005. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 37: 728-735. https://doi.org/10.1016/j.bone.2005.05.015
Reichardt, N., Duncan, S.H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K.P., Flint, H.J. and Louis, P., 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal 8: 1323-1335. https://doi.org/10.1038/ismej.2014.14
Reijnders, D., Goossens, G.H., Hermes, G.D., Neis, E.P., Van der Beek, C.M., Most, J., Holst, J.J., Lenaerts, K., Kootte, R.S., Nieuwdorp, M., Groen, A.K., Olde Damink, S.W., Boekschoten, M.V., Smidt, H., Zoetendal, E.G. Dejong, C.H. and Blaak, E.E., 2016. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metabolism 24: 341. https://doi.org/10.1016/j.cmet.2016.07.008
Rios-Covian, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., De los Reyes-Gavilan, C.G. and Salazar, N., 2016. Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology 7: 185. https://doi.org/10.3389/fmicb.2016.00185
Robertson, M.D., Bickerton, A.S., Dennis, A.L., Vidal, H. and Frayn, K.N., 2005. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. American Journal of Clinical Nutrition 82: 559-567.
'Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism ' () 82 American Journal of Clinical Nutrition : 559 -567 .
Roediger, W.E., 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21: 793-798.
'Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man ' () 21 Gut : 793 -798 .
Roelofsen, H., Priebe, M.G. and Vonk, R.J., 2010. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Beneficial Microbes 1: 433-437. https://doi.org/10.3920/bm2010.0028
Rosendale, D.I., Vetharaniam, I., Kelly, W.J., Upsdell, M., Cookson, A.L. and Roy, N., 2017. A case study: using microbial abundance data to mathematically calculate organic acid production by human faecal microbiota within an in vitro batch fermentation. Bioactive Carbohydrates and Dietary Fibre 9: 28-38. https://doi.org/10.1016/j.bcdf.2016.12.004
Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S. and Matteuzzi, D., 2005. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Applied and Environmental Microbiology 71: 6150-6158. https://doi.org/10.1128/AEM.71.10.6150-6158.2005
Rumberger, J.M., Arch, J.R. and Green, A., 2014. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ 2: e611. https://doi.org/10.7717/peerj.611
Russell, W.R., Gratz, S.W., Duncan, S.H., Holtrop, G., Ince, J., Scobbie, L., Duncan, G., Johnstone, A.M., Lobley, G.E., Wallace, R.J., Duthie, G.G. and Flint, H.J., 2011. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. American Journal of Clinical Nutrition 93: 1062-1072. https://doi.org/10.3945/ajcn.110.002188
Russo, F., Linsalata, M., Clemente, C., Chiloiro, M., Orlando, A., Marconi, E., Chimienti, G. and Riezzo, G., 2012a. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutrition Research 32: 940-946. https://doi.org/10.1016/j.nutres.2012.09.010
Russo, I., Luciani, A., De Cicco, P., Troncone, E. and Ciacci, C., 2012b. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS ONE 7: e32841-e32841.
'Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery ' () 7 PLoS ONE : e32841 -e32841 .
Sahuri-Arisoylu, M., Brody, L.P., Parkinson, J.R., Parkes, H., Navaratnam, N., Miller, A.D., Thomas, E.L., Frost, G. and Bell, J.D., 2016. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. International Journal of Obesity 40: 955-963. https://doi.org/10.1038/ijo.2016.23
Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y. and Kadowaki, T., 2006. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A (y) mice. Biochemical and Biophysical Research Communications 344: 597-604.
'Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A (y) mice ' () 344 Biochemical and Biophysical Research Communications : 597 -604 .
Samuel, B.S., Shaito, A. Motoike, T., Rey, F.E., Backhed, F., Manchester, J.K., Hammer, R.E., Williams, S.C., Crowley, J., Yanagisawa, M. and Gordon, J.I., 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the USA 105: 16767-16772. https://doi.org/10.1073/pnas.0808567105
Schauber, J., Dorschner, R.A., Yamasaki, K., Brouha, B. and Gallo, R.L., 2006. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118: 509-519. https://doi.org/10.1111/j.1365-2567.2006.02399.x
Scheppach, W., 1996. Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. Digestive Diseases and Sciences 41: 2254-2259.
'Treatment of distal ulcerative colitis with short-chain fatty acid enemas ' () 41 Digestive Diseases and Sciences : 2254 -2259 .
Schilderink, R., Verseijden, C., Seppen, J., Muncan, V., Van den Brink, G.R., Lambers, T.T., Van Tol, E.A. and De Jonge, W.J., 2016. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. American Journal of Physiology – Gastrointestinal and Liver Physiology 310: G1138-G1146. https://doi.org/10.1152/ajpgi.00411.2015
Schwab, M., Reynders, V., Loitsch, S., Steinhilber, D., Stein, J. and Schröder, O., 2007. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NFκB signalling. Molecular Immunology 44: 3625-3632. https://doi.org/10.1016/j.molimm.2007.04.010
Scott, K.P., Gratz, S.W., Sheridan, P.O., Flint, H.J. and Duncan, S.H., 2013. The influence of diet on the gut microbiota. Pharmacology Research 69: 52-60. https://doi.org/10.1016/j.phrs.2012.10.020
Scott, K.P., Martin, J.C., Campbell, G., Mayer, C.D. and Flint, H.J., 2006. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium ‘Roseburia inulinivorans’. Journal of Bacteriology 188: 4340-4349. https://doi.org/10.1128/JB.00137-06
Sellin, J.H., 1999. SCFAs: the enigma of weak electrolyte transport in the colon. News in Physiological Sciences 14: 58-64.
'SCFAs: the enigma of weak electrolyte transport in the colon ' () 14 News in Physiological Sciences : 58 -64 .
Shetty, S.A., Hugenholtz, F., Lahti, L., Smidt, H. and De Vos, W.M., 2017. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews 41: 182-199. https://doi.org/10.1093/femsre/fuw045
Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-Y, M., Glickman, J.N. and Garrett, W.S., 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569-573. https://doi.org/10.1126/science.1241165
Soty, M., Gautier-Stein, A., Rajas, F. and Mithieux, G., 2017. Gut-brain glucose signaling in energy homeostasis. Cell Metabolism 25: 1231-1242. https://doi.org/10.1016/j.cmet.2017.04.032
Swanson, K.S., De Vos, W.M., Martens, E.C., Gilbert, J.A., Menon, R.S., Soto-Vaca, A., Hautvast, J., Meyer, P.D., Borewicz, K., Vaughan, E.E. and Slavin, J.L., 2020. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Beneficial Microbes 11: 101-129. https://doi.org/10.3920/BM2019.0082
Takebe, K., Nio, J., Morimatsu, M., Karaki, S., Kuwahara, A., Kato, I. and Iwanaga, T., 2005. Histochemical demonstration of a Na(+)-coupled transporter for short-chain fatty acids (slc5a8) in the intestine and kidney of the mouse. Biomedical Research 26: 213-221.
'Histochemical demonstration of a Na(+)-coupled transporter for short-chain fatty acids (slc5a8) in the intestine and kidney of the mouse ' () 26 Biomedical Research : 213 -221 .
Tan, J., McKenzie, C., Vuillermin, Peter, J., Goverse, G., Vinuesa, Carola, G., Mebius, Reina, E., Macia, L. and Mackay, C.R., 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Reports 15: 2809-2824. https://doi.org/10.1016/j.celrep.2016.05.047
Teramae, H., Yoshikawa, T., Inoue, R., Ushida, K., Takebe, K., Nio-Kobayashi, J. and Iwanaga, T., 2010. The cellular expression of SMCT2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract. Biomedical Research 31: 239-249. https://doi.org/10.2220/biomedres.31.239
Todesco, T., Rao, A.V., Bosello, O. and Jenkins, D.J., 1991. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. American Journal of Clinical Nutrition 54: 860-865.
'Propionate lowers blood glucose and alters lipid metabolism in healthy subjects ' () 54 American Journal of Clinical Nutrition : 860 -865 .
Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F. and Gribble, F.M., 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein-oupled receptor FFAR2. Diabetes 61: 364-371. https://doi.org/10.2337/db11-1019
Tremaroli, V. and Bäckhed, F., 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489: 242.
'Functional interactions between the gut microbiota and host metabolism ' () 489 Nature : 242 .
Trinidad, T.P., Wolever, T.M. and Thompson, L.U., 1997. Effect of short chain fatty acids on calcium absorption in humans. Advances in Experimental Medicine and Biology 427: 183-189.
'Effect of short chain fatty acids on calcium absorption in humans ' () 427 Advances in Experimental Medicine and Biology : 183 -189 .
Trinidad, T.P., Wolever, T.M.S. and Thompson, L.U., 1993. Interactive effects of calcium and short chain fatty acids on absorption in the distal colon of man. Nutrition Research: 417-425. https://doi.org/10.1016/s0271
Trinidad, T.P., Wolever, T.M.S. and Thompson, L.U., 1999. Effects of calcium concentration, acetate, and propionate on calcium absorption in the human distal colon. Nutrition 15: 529-533.
'Effects of calcium concentration, acetate, and propionate on calcium absorption in the human distal colon ' () 15 Nutrition : 529 -533 .
Turroni, F., Milani, C., Duranti, S., Mancabelli, L., Mangifesta, M., Viappiani, A., Lugli, G.A., Ferrario, C., Gioiosa, L., Ferrarini, A., Li, J., Palanza, P., Delledonne, M., Van Sinderen, D. and Ventura, M., 2016. Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME Journal 10: 1656-1668. https://doi.org/10.1038/ismej.2015.236
Turroni, F., Özcan, E., Milani, C., Mancabelli, L., Viappiani, A., Van Sinderen, D., Sela, D.A. and Ventura, M., 2015. Glycan cross-feeding activities between bifidobacteria under in vitro conditions. Frontiers in Microbiology 6. https://doi.org/10.3389/fmicb.2015.01030
Van den Abbeele, P., Gérard, P., Rabot, S., Bruneau, A., El Aidy, S., Derrien, M., Kleerebezem, M., Zoetendal, E.G. Smidt, H., Verstraete, W., Van de Wiele, T. and Possemiers, S., 2011. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environmental Microbiology 13: 2667-2680. https://doi.org/10.1111/j.1462-2920.2011.02533.x
Van der Beek, C.M., Bloemen, J.G., Van den Broek, M.A., Lenaerts, K., Venema, K., Buurman, W.A. and Dejong, C.H., 2015. Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. Journal of Nutrition 145: 2019-2024. https://doi.org/10.3945/jn.115.211193
Van der Beek, C.M., Canfora, E.E., Lenaerts, K., Troost, F.J., Damink, S.W.M.O., Holst, J.J., Masclee, A.A.M., Dejong, C.H.C. and Blaak, E.E., 2016. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clinical Science 130: 2073-2082. https://doi.org/10.1042/cs20160263
Van Herreweghen, F., Van den Abbeele, P., De Mulder, T., De Weirdt, R., Geirnaert, A., Hernandez-Sanabria, E., Vilchez-Vargas, R., Jauregui, R., Pieper, D.H., Belzer, C., De Vos, W.M. and Van de Wiele, T., 2017. In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes 8: 81-96. https://doi.org/10.3920/BM2016.0013
Van Wey, A.S., Lovatt, S.J., Roy, N.C. and Shorten, P.R., 2016. Determination of potential metabolic pathways of human intestinal bacteria by modeling growth kinetics from cross-feeding dynamics. Food Research International 88: 207-216. https://doi.org/10.1016/j.foodres.2016.02.004
Venter, C.S., Vorster, H.H. and Cummings, J.H., 1990. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. American Journal of Gastroenterology 85: 549-553.
'Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers ' () 85 American Journal of Gastroenterology : 549 -553 .
Veprik, A., Laufer, D., Weiss, S., Rubins, N. and Walker, M.D., 2016. GPR41 modulates insulin secretion and gene expression in pancreatic β-cells and modifies metabolic homeostasis in fed and fasting states. FASEB Journal 30: 3860-3869.
'GPR41 modulates insulin secretion and gene expression in pancreatic β-cells and modifies metabolic homeostasis in fed and fasting states ' () 30 FASEB Journal : 3860 -3869 .
Verbeke, K., Ferchaud-Roucher, V., Preston, T., Small, A.C., Henckaerts, L., Krempf, M., Wang, H., Vonk, R.J. and Priebe, M.G., 2010. Influence of the type of indigestible carbohydrate on plasma and urine short-chain fatty acid profiles in healthy human volunteers. European Journal of Clinical Nutrition 64: 678-684. https://doi.org/10.1038/ejcn.2010.92
Vernia, P., Marcheggiano, A., Caprilli, R., Frieri, G., Corrao, G., Valpiani, D., Di Paolo, M.C., Paoluzi, P. and Torsoli, A., 1995. Short-chain fatty acid topical treatment in distal ulcerative colitis. Alimentary Pharmacology and Therapeutics 9: 309-313. https://doi.org/10.1111/j.1365-2036.1995.tb00386.x
Vidyasagar, S., Barmeyer, C., Geibel, J., Binder, H.J. and Rajendran, V.M., 2005. Role of short-chain fatty acids in colonic HCO3 secretion. American Journal of Physiology – Gastrointestinal and Liver Physiology 288: G1217-G1226. https://doi.org/10.1152/ajpgi.00415.2004
Vinolo, M.A.R., Hatanaka, E., Lambertucci, R.H., Newsholme, P. and Curi, R., 2009. Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochemistry and Function 27: 48-55. https://doi.org/10.1002/cbf.1533
Vinolo, M.A.R., Rodrigues, H.G., Nachbar, R.T. and Curi, R., 2011. Regulation of inflammation by short chain fatty acids. Nutrients 3: 858-876. https://doi.org/10.3390/nu3100858
Vulevic, J., Juric, A., Tzortzis, G. and Gibson, G.R., 2013. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. Journal of Nutrition 143: 324-331.
'A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults ' () 143 Journal of Nutrition : 324 -331 .
Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A., Louis, P., McIntosh, F., Johnstone, A.M., Lobley, G.E., Parkhill, J. and Flint, H.J., 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal 5: 220-230. https://doi.org/10.1038/ismej.2010.118
Wang, H., Shi, P., Zuo, L., Dong, J., Zhao, J., Liu, Q. and Zhu, W., 2016. Dietary non-digestible polysaccharides ameliorate intestinal epithelial barrier dysfunction in IL-10 knockout mice. Journal of Crohn’s and Colitis 10: 1076-1086.
'Dietary non-digestible polysaccharides ameliorate intestinal epithelial barrier dysfunction in IL-10 knockout mice ' () 10 Journal of Crohn’s and Colitis : 1076 -1086 .
Wang, H.B., Wang, P.Y., Wang, X., Wan, Y.L. and Liu, Y.C., 2012. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein claudin-1 transcription. Digestive Diseases and Sciences 57: 3126-3135. https://doi.org/10.1007/s10620-012-2259-4
Weaver, C.M., 2015. Diet, gut microbiome, and bone health. Current Osteoporosis Reports 13: 125-130. https://doi.org/10.1007/s11914-015-0257-0
West, N.P., Pyne, D.B., Cripps, A.W., Christophersen, C.T., Conlon, M.A. and Fricker, P.A., 2012. Gut balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals. Gut Microbes 3: 221-227. https://doi.org/10.4161/gmic.19579
Westerbeek, E.A., Van den Berg, A., Lafeber, H.N., Fetter, W.P. and van Elburg, R.M., 2011. The effect of enteral supplementation of a prebiotic mixture of non-human milk galacto-, fructo- and acidic oligosaccharides on intestinal permeability in preterm infants. British Journal of Nutrition 105: 268-274. https://doi.org/10.1017/S0007114510003405
Willemsen, L.E.M., Koetsier, M.A., Van Deventer, S.J.H. and Van Tol, E.A.F., 2003. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52: 1442-1447.
'Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts ' () 52 Gut : 1442 -1447 .
Wilms, E., Gerritsen, J., Smidt, H., Besseling-Van der Vaart, I., Rijkers, G.T., Garcia Fuentes, A.R., Masclee, A.A. and Troost, F.J., 2016. Effects of supplementation of the synbiotic Ecologic® 825/FOS P6 on intestinal barrier function in healthy humans: a randomized controlled trial. PLoS ONE 11: e0167775. https://doi.org/10.1371/journal.pone.0167775
Wolever, T.M., Brighenti, F., Royall, D., Jenkins, A.L. and Jenkins, D.J., 1989. Effect of rectal infusion of short chain fatty acids in human subjects. American Journal of Gastroenterology 84: 1027-1027.
'Effect of rectal infusion of short chain fatty acids in human subjects ' () 84 American Journal of Gastroenterology : 1027 -1027 .
Wolever, T.M., Spadafora, P. and Eshuis, H., 1991. Interaction between colonic acetate and propionate in humans. American Journal of Clinical Nutrition 53: 681-687.
'Interaction between colonic acetate and propionate in humans ' () 53 American Journal of Clinical Nutrition : 681 -687 .
Wu, W., Sun, M., Chen, F., Cao, A.T., Liu, H., Zhao, Y., Huang, X., Xiao, Y., Yao, S., Zhao, Q., Liu, Z. and Cong, Y., 2017. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunology 10: 946-956. https://doi.org/10.1038/mi.2016.114
Yamashita, H., Fujisawa, K., Ito, E., Idei, S., Kawaguchi, N., Kimoto, M., Hiemori, M. and Tsuji, H., 2007. Improvement of obesity and glucose tolerance by acetate in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology, and Biochemistry 71: 1236-1243.
'Improvement of obesity and glucose tolerance by acetate in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats ' () 71 Bioscience, Biotechnology, and Biochemistry : 1236 -1243 .
Yamashita, H., Maruta, H., Jozuka, M., Kimura, R., Iwabuchi, H., Yamato, M., Saito, T., Fujisawa, K., Takahashi, Y. and Kimoto, M., 2009. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology, and Biochemistry 73: 570-576.
'Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats ' () 73 Bioscience, Biotechnology, and Biochemistry : 570 -576 .
Yan, H. and Ajuwon, K.M., 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS ONE 12: e0179586. https://doi.org/10.1371/journal.pone.0179586
Zasloff, M., 2006. Inducing endogenous antimicrobial peptides to battle infections. Proceedings of the National Academy of Sciences 103: 8913-8914.
'Inducing endogenous antimicrobial peptides to battle infections ' () 103 Proceedings of the National Academy of Sciences : 8913 -8914 .
Ze, X., Duncan, S.H., Louis, P. and Flint, H.J., 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME Journal 6: 1535-1543. https://doi.org/10.1038/ismej.2012.4
Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., Fu, H., Xue, X., Lu, C. and Ma, J., 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359: 1151-1156.
'Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes ' () 359 Science : 1151 -1156 .
Zheng, L., Kelly, C.J., Battista, K.D., Schaefer, R., Lanis, J.M., Alexeev, E.E., Wang, R.X., Onyiah, J.C., Kominsky, D.J. and Colgan, S.P., 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. Journal of Immunology 199: 2976-2984.
'Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2 ' () 199 Journal of Immunology : 2976 -2984 .
Zhou, D., Pan, Q., Xin, F.-Z., Zhang, R.-N., He, C.-X., Chen, G.-Y., Liu, C., Chen, Y.-W. and Fan, J.-G., 2017. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology 23: 60-75. https://doi.org/10.3748/wjg.v23.i1.60
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 4014 | 3959 | 688 |
PDF Views & Downloads | 5590 | 5536 | 827 |
Evidence is accumulating that short chain fatty acids (SCFA) play an important role in the maintenance of gut and metabolic health. The SCFA acetate, propionate and butyrate are produced from the microbial fermentation of indigestible carbohydrates and appear to be key mediators of the beneficial effects elicited by the gut microbiome. Microbial SCFA production is essential for gut integrity by regulating the luminal pH, mucus production, providing fuel for epithelial cells and effects on mucosal immune function. SCFA also directly modulate host metabolic health through a range of tissue-specific mechanisms related to appetite regulation, energy expenditure, glucose homeostasis and immunomodulation. Therefore, an increased microbial SCFA production can be considered as a health benefit, but data are mainly based on animal studies, whereas well-controlled human studies are limited. In this review an expert group by ILSI Europe’s Prebiotics Task Force discussed the current scientific knowledge on SCFA to consider the relationship between SCFA and gut and metabolic health with a particular focus on human evidence. Overall, the available mechanistic data and limited human data on the metabolic consequences of elevated gut-derived SCFA production strongly suggest that increasing SCFA production could be a valuable strategy in the preventing gastro-intestinal dysfunction, obesity and type 2 diabetes mellitus. Nevertheless, there is an urgent need for well controlled longer term human SCFA intervention studies, including measurement of SCFA fluxes and kinetics, the heterogeneity in response based on metabolic phenotype, the type of dietary fibre and fermentation site in fibre intervention studies and the control for factors that could shape the microbiome like diet, physical activity and use of medication.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 4014 | 3959 | 688 |
PDF Views & Downloads | 5590 | 5536 | 827 |