Viral Pneumonia during the COVID-19 Pandemic, 2019–2021 Evoking Needs for SARS-CoV-2 and Additional Vaccinations
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Identification of Viral Infections, 2019–2021
2.2.1. Operation Process in the FilmArray System
2.2.2. Polymerase Chain Reaction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galván, J.M.; Rajas, O.; Aspa, J. Review of Non-Bacterial Infections in Respiratory Medicine: Viral Pneumonia. Arch. Bronconeumol. 2015, 51, 590–597. [Google Scholar] [CrossRef]
- Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet 2011, 377, 1264–1275. [Google Scholar] [CrossRef]
- Attaway, A.H.; Scheraga, R.G.; Bhimraj, A.; Biehl, M.; Hatipoğlu, U. Severe COVID-19 pneumonia: Pathogenesis and clinical management. BMJ 2021, 372, N436. [Google Scholar] [CrossRef] [PubMed]
- Creager, H.M.; Cabrera, B.; Schnaubelt, A.; Cox, J.L.; Cushman-Vokoun, A.M.; Shakir, S.M.; Tardif, K.D.; Huang, M.L.; Jerome, K.R.; Greninger, A.L.; et al. Clinical evaluation of the BioFire(R) Respiratory Panel 2.1 and detection of SARS-CoV-2. J. Clin. Virol. 2020, 129, 104538. [Google Scholar] [CrossRef]
- Eckbo, E.J.; Locher, K.; Caza, M.; Li, L.; Lavergne, V.; Charles, M. Evaluation of the BioFire(R) COVID-19 test and Respiratory Panel 2.1 for rapid identification of SARS-CoV-2 in nasopharyngeal swab samples. Diagn. Microbiol. Infect. Dis. 2021, 99, 115260. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.P.; Tsai, C.S.; Su, P.L.; Huang, T.H.; Ko, W.C.; Lee, N.Y. Respiratory etiological surveillance among quarantined patients with suspected lower respiratory tract infection at a medical center in southern Taiwan during COVID-19 pandemic. J. Microbiol. Immunol. Infect. 2022, 55, 428–435. [Google Scholar] [CrossRef]
- Visseaux, B.; Le Hingrat, Q.; Collin, G.; Bouzid, D.; Lebourgeois, S.; Le Pluart, D.; Deconinck, L.; Lescure, F.X.; Lucet, J.C.; Bouadma, L.; et al. Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel, the First Rapid Multiplex PCR Commercial Assay for SARS-CoV-2 Detection. J. Clin. Microbiol. 2020, 58, e00630-20. [Google Scholar] [CrossRef] [PubMed]
- Hartenian, E.; Nandakumar, D.; Lari, A.; Ly, M.; Tucker, J.M.; Glaunsinger, B.A. The molecular virology of coronaviruses. J. Biol. Chem. 2020, 295, 12910–12934. [Google Scholar] [CrossRef]
- Heimdal, I.; Moe, N.; Krokstad, S.; Christensen, A.; Skanke, L.H.; Nordbø, S.A.; Døllner, H. Human Coronavirus in Hospitalized Children with Respiratory Tract Infections: A 9-Year Population-Based Study From Norway. J. Infect. Dis. 2019, 219, 1198–1206. [Google Scholar] [CrossRef]
- McIntosh, K.; Chao, R.K.; Krause, H.E.; Wasil, R.; Mocega, H.E.; Mufson, M.A. Coronavirus infection in acute lower respiratory tract disease of infants. J. Infect. Dis. 1974, 130, 502–507. [Google Scholar] [CrossRef]
- Szczawinska-Poplonyk, A.; Jonczyk-Potoczna, K.; Breborowicz, A.; Bartkowska-Sniatkowska, A.; Figlerowicz, M. Fatal respiratory distress syndrome due to coronavirus infection in a child with severe combined immunodeficiency. Influenza Other Respir. Viruses 2013, 7, 634–636. [Google Scholar] [CrossRef]
- Gorse, G.J.; Donovan, M.M.; Patel, G.B.; Balasubramanian, S.; Lusk, R.H. Coronavirus and other respiratory illnesses comparing older with young adults. Am. J. Med. 2015, 128, 1251.e11–1251.e20. [Google Scholar] [CrossRef] [PubMed]
- Forchette, L.; Sebastian, W.; Liu, T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Curr. Med. Sci. 2021, 41, 1037–1051. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.H.; Ison, M.G. Respiratory syncytial virus infection in adults. BMJ 2019, 366, l5021. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.T.; Bont, L.J.; Zar, H.; Polack, F.P.; Park, C.; Claxton, A.; Borok, G.; Butylkova, Y.; Wegzyn, C. Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatr. Pulmonol. 2017, 52, 556–569. [Google Scholar] [CrossRef]
- Tsutsumi, H. Respiratory syncytial virus infection. Kansenshogaku Zasshi 2005, 79, 857–863. [Google Scholar] [CrossRef]
- Borchers, A.T.; Chang, C.; Gershwin, M.E.; Gershwin, L.J. Respiratory syncytial virus--a comprehensive review. Clin. Rev. Allergy Immunol. 2013, 45, 331–379. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P., 3rd; Fishbein, M.; Echavarria, M. Adenovirus. Semin. Respir. Crit. Care. Med. 2011, 32, 494–511. [Google Scholar] [CrossRef]
- Lynch, J.P., 3rd; Kajon, A.E. Adenovirus: Epidemiology, Global Spread of Novel Types, and Approach to Treatment. Semin. Respir. Crit. Care. Med. 2021, 42, 800–821. [Google Scholar] [CrossRef]
- Lion, T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin. Microbiol. Rev. 2014, 27, 441–462. [Google Scholar] [CrossRef]
- Salmona, M.; Feghoul, L.; LeGoff, J. Which drugs to treat Adenovirus infections? Virologie 2021, 25, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Deloria-Knoll, M.; Madhi, S.A.; Cohen, C.; Ali, A.; Basnet, S.; Bassat, Q.; Brooks, W.A.; Chittaganpitch, M. Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health. 2021, 9, e33–e43. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.E.; Williams, J.V. Human Metapneumovirus. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef]
- Vinci, A.; Lee, P.J.; Krilov, L.R. Human Metapneumovirus Infection. Pediatr. Rev. 2018, 39, 623–624. [Google Scholar] [CrossRef]
- Vandini, S.; Biagi, C.; Fischer, M.; Lanari, M. Impact of Rhinovirus Infections in Children. Viruses 2019, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Stock, I. Human rhinovirus diseases--epidemiology, treatment and prevention. Med. Monatsschr. Pharm. 2014, 37, 44–53. [Google Scholar]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primer. 2018, 4, 3. [Google Scholar] [CrossRef]
- Heikkinen, T. Influenza in children. Acta Paediatr. 2006, 95, 778–784. [Google Scholar] [CrossRef]
- Gill, P.J.; Ashdown, H.F.; Wang, K.; Heneghan, C.; Roberts, N.W.; Harnden, A.; Mallett, S. Identification of children at risk of influenza-related complications in primary and ambulatory care: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 139–149. [Google Scholar] [CrossRef]
- Fox, T.G.; Christenson, J.C. Influenza and parainfluenza viral infections in children. Pediatr. Rev. 2014, 35, 217–227, quiz 228. [Google Scholar] [CrossRef] [PubMed]
- Tagarro, A.; Cruz-Cañete, M.; Otheo, E.; Launes, C.; Couceiro, J.A.; Pérez, C.; Alfayate, S. Oseltamivir for the treatment of influenza in children and adolescents. An. Pediatr. 2019, 90, 317.e1–317.e8. [Google Scholar] [CrossRef] [PubMed]
- Mattila, J.M.; Vuorinen, T.; Waris, M.; Antikainen, P.; Heikkinen, T. Oseltamivir treatment of influenza A and B infections in infants. Influenza Other Respir. Viruses 2021, 15, 618–624. [Google Scholar] [CrossRef]
- Russell, E.; Ison, M.G. Parainfluenza Virus in the Hospitalized Adult. Clin. Infect. Dis. 2017, 65, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D. Croup. BMJ. Clin. Evid. 2009, 2009, 0321. [Google Scholar] [PubMed]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef]
- Butt, A.A.; Talisa, V.B.; Yan, P.; Shaikh, O.S.; Omer, S.B.; Mayr, F.B. Vaccine Effectiveness of 3 Versus 2 Doses of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA Vaccines in a High-Risk National Population. Clin. Infect. Dis. 2022, 75, e579–e584. [Google Scholar] [CrossRef]
- Hause, A.M.; Baggs, J.; Marquez, P.; Myers, T.R.; Gee, J.; Su, J.R.; Zhang, B.; Thompson, D.; Shimabukuro, T.T.; Shay, D.K. COVID-19 Vaccine Safety in Children Aged 5-11 Years—United States, November 3–December 19, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1755–1760. [Google Scholar] [CrossRef]
- Lee, A.S.Y.; Balakrishnan, I.D.D.; Khoo, C.Y.; Ng, C.T.; Loh, J.K.X.; Chan, L.L.; Teo, L.L.Y.; Sim, D.K.L. Myocarditis Following COVID-19 Vaccination: A Systematic Review (October 2020–October 2021). Heart Lung Circ. 2022, 31, 757–765. [Google Scholar] [CrossRef]
- Vardeny, O.; Kim, K.; Udell, J.A.; Joseph, J.; Desai, A.S.; Farkouh, M.E.; Hegde, S.M.; Hernandez, A.F.; McGeer, A.; Talbot, H.K.; et al. Effect of High-Dose Trivalent vs. Standard-Dose Quadrivalent Influenza Vaccine on Mortality or Cardiopulmonary Hospitalization in Patients with High-risk Cardiovascular Disease: A Randomized Clinical Trial. JAMA 2021, 325, 39–49. [Google Scholar] [CrossRef]
Group | All | % | <18 | % | >18 | % |
---|---|---|---|---|---|---|
Number | 1147 | 100.0 | 128 | 100.0 | 1019 | 100.0 |
Age (mean, sd) | 63.40 | 3.65 | 70.90 | |||
(26.53) | (4.27) | (16.87) | ||||
Male | 761 | 66.3 | 77 | 60.2 | 684 | 67.1 |
Female | 386 | 33.7 | 51 | 39.8 | 335 | 32.9 |
Influenza A | 2 | 0.2 | 2 | 1.6 | 0 | 0.0 |
Influenza B | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Influenza (total) | 2 | 0.2 | 2 | 1.6 | 0 | 0 |
RSV | 49 | 4.3 | 29 | 22.7 | 20 | 2.0 |
Coronavirus | 22 | 1.9 | 2 | 1.6 | 20 | 2.0 |
Parainfluenza | 6 | 0.5 | 5 | 3.9 | 1 | 0.1 |
virus 1 | ||||||
Parainfluenza | 1 | 0.1 | 1 | 0.8 | 0 | 0.0 |
virus 2 | ||||||
Parainfluenza | 13 | 1.1 | 9 | 7.0 | 4 | 0.4 |
virus 3 | ||||||
Parainfluenza | 13 | 1.1 | 7 | 5.5 | 6 | 0.6 |
virus 4 | ||||||
Parainfluenza (total) | 33 | 2.8 | 22 | 17.2 | 11 | 1.1 |
Metapneumovirus | 27 | 2.4 | 12 | 9.4 | 15 | 1.5 |
Adenovirus | 23 | 2.0 | 16 | 12.5 | 7 | 0.7 |
Rhinovirus | 82 | 7.1 | 31 | 24.2 | 51 | 5.0 |
Mycoplasma pneumoniae | 7 | 0.6 | 7 | 5.5 | 0 | 0.0 |
Chlamydia pneumoniae | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Bordetella parapertusis | 1 | 0.1 | 0 | 0.0 | 1 | 0.1 |
Bordetella pertusis | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-C.; Wang, H.-C.; Lin, W.-C.; Kuo, Y.-T.; Hsu, Y.-H.; Tsai, Y.-T.; Lu, S.-C.; Wang, Y.-H.; Chen, S.-Y. Viral Pneumonia during the COVID-19 Pandemic, 2019–2021 Evoking Needs for SARS-CoV-2 and Additional Vaccinations. Vaccines 2023, 11, 905. https://doi.org/10.3390/vaccines11050905
Lin S-C, Wang H-C, Lin W-C, Kuo Y-T, Hsu Y-H, Tsai Y-T, Lu S-C, Wang Y-H, Chen S-Y. Viral Pneumonia during the COVID-19 Pandemic, 2019–2021 Evoking Needs for SARS-CoV-2 and Additional Vaccinations. Vaccines. 2023; 11(5):905. https://doi.org/10.3390/vaccines11050905
Chicago/Turabian StyleLin, Sheng-Chieh, Hsiao-Chin Wang, Wen-Chuan Lin, Yung-Ting Kuo, Yi-Hsiang Hsu, Yin-Tai Tsai, Shou-Cheng Lu, Yuan-Hung Wang, and Shih-Yen Chen. 2023. "Viral Pneumonia during the COVID-19 Pandemic, 2019–2021 Evoking Needs for SARS-CoV-2 and Additional Vaccinations" Vaccines 11, no. 5: 905. https://doi.org/10.3390/vaccines11050905
APA StyleLin, S.-C., Wang, H.-C., Lin, W.-C., Kuo, Y.-T., Hsu, Y.-H., Tsai, Y.-T., Lu, S.-C., Wang, Y.-H., & Chen, S.-Y. (2023). Viral Pneumonia during the COVID-19 Pandemic, 2019–2021 Evoking Needs for SARS-CoV-2 and Additional Vaccinations. Vaccines, 11(5), 905. https://doi.org/10.3390/vaccines11050905