Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmids
2.2. Compounds
2.3. Protein Expression and Purification
2.4. Kinetics of RdRp Activity
2.5. Quantitative RdRp Assays to Test Non-Nucleoside Inhibitors (NNI)
2.6. Gel-Based RdRp Assays
2.7. Data Analysis
3. Results
3.1. RdRp Expression and Characterisation
3.2. Testing of RdRp Inhibitors
4. Discussion
4.1. RdRp Expression and Characterisation
4.2. Testing of RdRp Inhibitors
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marcato, P.S.; Benazzi, C.; Vecchi, G.; Galeotti, M.; Della Salda, L.; Sarli, G.; Lucidi, P. Clinical and pathological features of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Rev. Sci. Tech. 1991, 10, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Abrantes, J.; Loo, W.V.D.; Le Pendu, J.; Esteves, P.J. Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): A review. Vet. Res. 2012, 43. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.J.; Chen, W.X. Viral haemorrhagic disease in rabbits: A review. Vet. Res. Commun. 1989, 13, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Mitsui, I.; Okada, Y.; Furuya, T.; Ochiai, K.; Umemura, T.; Itakura, C. Distribution of rabbit haemorrhagic disease virus RNA in experimentally infected rabbits. J. Comp. Pathol. 2001, 124, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.; Weissenbock, H. Comparative histopathological study of rabbit haemorrhagic disease (RHD) and European brown hare syndrome (EBHS). J. Comp. Pathol. 1992, 107, 103–113. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Costa-e-Silva, A.; Oliveira, M.J.; Monteiro, E.; Cunha, E.M.; Aguas, A.P. Severe leukopenia and liver biochemistry changes in adult rabbits after calicivirus infection. Res. Vet. Sci. 2006, 80, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.M.; Costa, E.S.A.; Aguas, A.P.; Teixeira, L.; Ferreira, P.G. Early acute depletion of lymphocytes in calicivirus-infected adult rabbits. Vet. Res. Commun. 2010, 34, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiedzka-Rystwej, P.; Hukowska-Szematowicz, B.; Tokarz-Deptula, B.; Trzeciak-Ryczek, A.; Dzialo, J.; Deptula, W. Apoptosis of peripheral blood leucocytes in rabbits infected with different strains of rabbit haemorrhagic disease virus. Acta Biochim. Polon. 2013, 60, 65–69. [Google Scholar] [PubMed]
- Delibes-Mateos, M.; Delibes, M.; Ferreras, P.; Villafuerte, R. Key role of European rabbits in the conservation of the Western Mediterranean basin hotspot. Conserv. Biol. 2008, 22, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Delibes-Mateos, M.; Ferreras, P.; Villafuerte, R. Rabbit populations and game management: The situation after 15 years of rabbit haemorrhagic disease in central-southern Spain. Biodivers. Conserv. 2008, 17, 559–574. [Google Scholar] [CrossRef]
- Bird, P.M.G.; Peacock, D.; Jennings, S. Damage caused by low-density exotic herbivore populations: The impact of introduced European rabbits on marsupial herbivores and Allocasuarina and Bursaria seedling survival in Australian coastal shrubland. Biol. Invasions 2012, 14, 743–755. [Google Scholar] [CrossRef]
- Cooke, B.C.P.; Simpson, S.; Saunders, G. The economic benefits of the biological bontrol of rabbits in Australia, 1950–2011. Aust. Econ. Hist. Rev. 2013, 53, 91–107. [Google Scholar] [CrossRef]
- Wirblich, C.; Thiel, H.J.; Meyers, G. Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J.Virol. 1996, 70, 7974–7983. [Google Scholar] [PubMed]
- Meyers, G.; Wirblich, C.; Thiel, H.J. Rabbit hemorrhagic disease virus—Molecular cloning and nucleotide sequencing of a calicivirus genome. Virology 1991, 184, 664–676. [Google Scholar] [CrossRef]
- Ohlinger, V.F.; Thiel, H.J. Identification of the viral haemorrhagic disease virus of rabbits as a calicivirus. Rev. Sci. Tech. 1991, 10, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Green, K.Y.; Ando, T.; Balayan, M.S.; Berke, T.; Clarke, I.N.; Estes, M.K.; Matson, D.O.; Nakata, S.; Neill, J.D.; et al. Taxonomy of the caliciviruses. J. Infect. Dis. 2000, 181, S322–S330. [Google Scholar] [CrossRef] [PubMed]
- Parra, F.; Prieto, M. Purification and characterization of a calicivirus as the causative agent of a lethal hemorrhagic disease in rabbits. J. Virol. 1990, 64, 4013–4015. [Google Scholar] [PubMed]
- Meyers, G.; Wirblich, C.; Thiel, H.J.; Thumfart, J.O. Rabbit hemorrhagic disease virus: Genome organization and polyprotein processing of a calicivirus studied after transient expression of cDNA constructs. Virology 2000, 276, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Meyers, G.; Wirblich, C.; Thiel, H.J. Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology 1991, 184, 677–686. [Google Scholar] [CrossRef]
- Machin, A.; Martin Alonso, J.M.; Parra, F. Identification of the amino acid residue involved in rabbit hemorrhagic disease virus VPg uridylylation. J. Biol. Chem. 2001, 276, 27787–27792. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.M.M.; Casais, R.; Boga, J.A.; Parra, F. Processing of rabbit hemorrhagic disease virus polyprotein. J.Virol. 1996, 70, 1261–1265. [Google Scholar]
- Boga, J.A.; Marin, M.S.; Casais, R.; Prieto, M.; Parra, F. In vitro translation of a subgenomic mRNA from purified virions of the Spanish field isolate AST/89 of rabbit hemorrhagic disease virus (RHDV). Virus Res. 1992, 26, 33–40. [Google Scholar] [CrossRef]
- Urakova, N.; Frese, M.; Hall, R.N.; Liu, J.; Matthaei, M.; Strive, T. Expression and partial characterisation of rabbit haemorrhagic disease virus non-structural proteins. Virology 2015, 484, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Kerr, P.J.; Kitchen, A.; Holmes, E.C. Origin and phylodynamics of rabbit hemorrhagic disease virus. J.Virol. 2009, 83, 12129–12138. [Google Scholar] [CrossRef] [PubMed]
- Strive, T.; Wright, J.D.; Robinson, A.J. Identification and partial characterisation of a new Lagovirus in Australian wild rabbits. Virology 2009, 384, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Capucci, L.; Fusi, P.; Lavazza, A.; Pacciarini, M.L.; Rossi, C. Detection and preliminary characterization of a new rabbit calicivirus related to rabbit hemorrhagic disease virus but nonpathogenic. J. Virol. 1996, 70, 8614–8623. [Google Scholar] [PubMed]
- Ghislaine, G.R.; Zwingelstein, F.; Fages, M.P.; Bertagnoli, S.; Gelfi, J.; Aubineau, J.; Roobrouck, A.; Botti, G.; Lavazza, A.; Marchandeau, S. Characterisation of a non-pathogenic and non-protective infectious rabbit lagovirus related to RHDV. Virology 2011, 410, 395–402. [Google Scholar] [Green Version]
- Strive, T.; Wright, J.; Kovaliski, J.; Botti, G.; Capucci, L. The non-pathogenic Australian lagovirus RCV-A1 causes a prolonged infection and elicits partial cross-protection to rabbit haemorrhagic disease virus. Virology 2010, 398, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, M.; Kerr, P.J.; Strive, T. In situ hybridisation assay for localisation of rabbit calicivirus Australia-1 (RCV-A1) in European rabbit (Oryctolagus cuniculus) tissues. J. Virol. Methods 2013, 188, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Bruenn, J.A. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucl. Acids Res. 2003, 31, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Gall-Recule, G.L.; Zwingelstein, F.; Boucher, S.; Normand, B.L.; Plassiart, G.; Portejoie, Y.; Decors, A.; Bertagnoli, S.; Guerin, J.L.; Marchandeau, S. Detection of a new variant of rabbit haemorrhagic disease virus in France. Vet. Rec. 2011, 168, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Dalton, K.P.; Nicieza, I.; Abrantes, J.; Esteves, P.J.; Parra, F. Spread of new variant RHDV in domestic rabbits on the Iberian Peninsula. Vet. Microbiol. 2014, 169, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Dalton, K.P.; Nicieza, I.; Balseiro, A.; Muguerza, M.A.; Rosell, J.M.; Casais, R.; Alvarez, A.L.; Parra, F. Variant rabbit hemorrhagic disease virus in young rabbits, Spain. Emerg. Infect. Dis. 2012, 18, 2009–2012. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.M.; Dalton, K.P.; Magalhaes, M.J.; Parra, F.; Esteves, P.J.; Holmes, E.C.; Abrantes, J. Full genomic analysis of new variant rabbit hemorrhagic disease virus revealed multiple recombination events. J. Gen. Virol. 2015, 96, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Dalton, K.P.; Abrantes, J.; Lopes, A.M.; Nicieza, I.; Alvarez, A.L.; Esteves, P.J.; Parra, F. Complete genome sequence of two rabbit hemorrhagic disease virus variant b isolates detected on the Iberian Peninsula. Arch. Virol. 2015, 160, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Gall-Recule, G.L.; Lavazza, A.; Marchandeau, S.; Bertagnoli, S.; Zwingelstein, F.; Cavadini, P.; Martinelli, N.; Lombardi, G.; Guerin, J.L.; Lemaitre, E.; et al. Emergence of a new lagovirus related to rabbit haemorrhagic disease virus. Vet. Res. 2013, 44, 81. [Google Scholar] [CrossRef] [PubMed]
- Barcena, J.; Guerra, B.; Angulo, I.; Gonzalez, J.; Valcarcel, F.; Mata, C.P.; Caston, J.R.; Blanco, E.; Alejo, A. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles. Vet. Res. 2015, 46, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.N.; Mahar, J.E.; Haboury, S.; Stevens, V.; Holmes, E.C.; Strive, T. Emerging rabbit hemorrhagic disease virus 2 (RHDVb), Australia. Emerg. Infect. Dis. 2015, 21, 2276–2278. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.N.; Lambden, P.R. The molecular biology of caliciviruses. J. Gen. Virol. 1997, 78, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, A.L.; Martin Alonso, J.M.; Casais, R.; Boga, J.A.; Parra, F. Expression of enzymatically active rabbit hemorrhagic disease virus RNA-dependent RNA polymerase in Escherichia coli. J. Virol. 1998, 72, 2999–3004. [Google Scholar] [PubMed]
- Vazquez, A.L.L.; Alonso, J.M.M.; Parra, F. Characterisation of the RNA-dependent RNA polymerase from Rabbit hemorrhagic disease virus produced in Escherichia coli. J. Virol. 2001, 146, 59–69. [Google Scholar]
- Ng, K.K.; Cherney, M.M.; Vazquez, A.L.; Machin, A.; Alonso, J.M.; Parra, F.; James, M.N. Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J. Biol. Chem. 2002, 277, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Barcena, J.; Ramirez, M.A.; Boga, J.A.; Parra, F.; Torres, J.M. Synthesis in vitro of rabbit hemorrhagic disease virus subgenomic RNA by internal initiation on (−)sense genomic RNA: Mapping of a subgenomic promoter. J. Biol. Chem. 2004, 279, 17013–17018. [Google Scholar] [CrossRef] [PubMed]
- Eltahla, A.A.; Lim, K.L.; Eden, J.S.; Kelly, A.G.; Mackenzie, J.M.; White, P.A. Nonnucleoside inhibitors of norovirus RNA polymerase: Scaffolds for rational drug design. Antimicrob. Agents Chemother. 2014, 58, 3115–3123. [Google Scholar] [CrossRef] [PubMed]
- Eltahla, A.A.; Lackovic, K.; Marquis, C.; Eden, J.S.; White, P.A. A fluorescence-based high-throughput screen to identify small compound inhibitors of the genotype 3a hepatitis C virus RNA polymerase. J. Biomol. Screen. 2013, 18, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Deval, J.; Fan, B.; Cai, H.; Soulard, C.; Ranjith-Kumar, C.T.; Smith, D.B.; Blatt, L.; Beigelman, L.; Kao, C.C. Biochemical study of the comparative inhibition of hepatitis C virus RNA polymerase by VX-222 and filibuvir. Antimicrob. Agents Chemother. 2012, 56, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.M.; Trueman, H.E.; Zhang, Q.; Kojima, K.; Kameda, T.; Sutherland, T.D. Cross-linking in the silks of bees, ants and hornets. Insect Biochem. Mol Biol. 2014, 48, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Elsworth, P.; Cooke, B.D.; Kovaliski, J.; Sinclair, R.; Holmes, E.C.; Strive, T. Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus). Virology 2014, 464, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Gorbalenya, A.E.; Pringle, F.M.; Zeddam, J.L.; Luke, B.T.; Cameron, C.E.; Kalmakoff, J.; Hanzlik, T.N.; Gordon, K.H.; Ward, V.K. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J. Mol. Biol. 2002, 324, 47–62. [Google Scholar] [CrossRef]
- Ferrer-Orta, C.; Arias, A.; Escarmis, C.; Verdaguer, N. A comparison of viral RNA-dependent RNA polymerases. Curr. Opin. Struct. Biol. 2006, 16, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Korboukh, V.K.; Lee, C.A.; Acevedo, A.; Vignuzzi, M.; Xiao, Y.; Arnold, J.J.; Hemperly, S.; Graci, J.D.; August, A.; Andino, R.; et al. RNA virus population diversity, an optimum for maximal fitness and virulence. J. Biol. Chem. 2014, 289, 29531–29544. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, H.; Zeng, J.; Li, C.; Zhou, G.; Yang, D.; Yu, L. Foot-and-mouth disease virus low-fidelity polymerase mutants are attenuated. Arch. Virol. 2014, 159, 2641–2650. [Google Scholar] [CrossRef] [PubMed]
- Rozen-Gagnon, K.; Stapleford, K.A.; Mongelli, V.; Blanc, H.; Failloux, A.B.; Saleh, M.C.; Vignuzzi, M. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog. 2014, 10, e1003877. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet. 2008, 9, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.A.; Hyde, J.; Mackenzie, J.M.; Hansman, G.S.; Oka, T.; Takeda, N.; White, P.A. Comparison of the replication properties of murine and human calicivirus RNA-dependent RNA polymerases. Virus Genes 2011, 42, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Haussinger, D.; Steeb, R.; Gerok, W. Ammonium and bicarbonate homeostasis in chronic liver disease. Klin. Wochenschr. 1990, 68, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kaunitz, J.D.; Akiba, Y. Duodenal intracellular bicarbonate and the “CF paradox”. JOP J. Pancreas 2001, 2, 268–273. [Google Scholar]
- Kaunitz, J.D.; Akiba, Y. Review article: Duodenal bicarbonate-mucosal protection, luminal chemosensing and acid-base balance. Aliment. Pharmacol. Ther. 2006, 24, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Warrilow, D.; Lott, W.B.; Greive, S.; Gowans, E.J. Properties of the bovine viral diarrhoea virus replicase in extracts of infected MDBK cells. Arch. Virol. 2000, 145, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Wells, V.; Plotch, S.J.; DeStefano, J.J. Primer-dependent synthesis by poliovirus RNA-dependent RNA polymerase (3D(pol)). Nucl. Acids Res. 2001, 29, 2715–2724. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Kaneko, S.; Shirota, Y.; Qin, W.; Nomura, T.; Kobayashi, K.; Murakami, S. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J. Biol. Chem. 1998, 273, 15479–15486. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Tanaka, Y.; Yap, C.C.; Aizaki, H.; Matsuura, Y.; Miyamura, T. Expression of hepatitis C virus NS5B protein: Characterization of its RNA polymerase activity and RNA binding. Hepatology 1999, 29, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Gutshall, L.L.; Del Vecchio, A.M. Identification and characterization of an RNA-dependent RNA polymerase activity within the nonstructural protein 5B region of bovine viral diarrhea virus. J. Virol. 1998, 72, 9365–9369. [Google Scholar] [PubMed]
- Kuhl, P.W. Excess-substrate inhibition in enzymology and high-dose inhibition in pharmacology: A reinterpretation. Biochem. J. 1994, 298, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.C.; Lieb, A.; Nijhout, H.F. The biological significance of substrate inhibition: A mechanism with diverse functions. BioEssays 2010, 32, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.; Siems, W.; Gerber, G. Purine and pyridine nucleotides in rabbit red blood cells of different maturity. Cell Biochem. Funct. 1988, 6, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Traut, T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 1994, 140, 1–22. [Google Scholar] [CrossRef] [PubMed]
- West, A.B.; Roberts, T.M.; Kolodner, R.D. Regulation of the reverse transcriptase of human immunodeficiency virus type 1 by dNTPs. Proc. Nat. Acad. Sci. USA 1992, 89, 9720–9724. [Google Scholar] [CrossRef] [PubMed]
- Ranjith-Kumar, C.T.; Gutshall, L.; Sarisky, R.T.; Kao, C.C. Multiple interactions within the hepatitis C virus RNA polymerase repress primer-dependent RNA synthesis. J. Mol. Biol. 2003, 330, 675–685. [Google Scholar] [CrossRef]
- Bressanelli, S.; Tomei, L.; Rey, F.A.; de Francesco, R. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol. 2002, 76, 3482–3492. [Google Scholar] [CrossRef] [PubMed]
- Chinnaswamy, S.; Murali, A.; Li, P.; Fujisaki, K.; Kao, C.C. Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions. J. Virol. 2010, 84, 5923–5935. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M. Error catastrophe and antiviral strategy. Proc. Nat. Acad. Sci. USA 2002, 99, 13374–13376. [Google Scholar] [CrossRef] [PubMed]
- Bull, J.J.; Sanjuan, R.; Wilke, C.O. Theory of lethal mutagenesis for viruses. J. Virol. 2007, 81, 2930–2939. [Google Scholar] [CrossRef] [PubMed]
- Summers, J.; Litwin, S. Examining the theory of error catastrophe. J. Virol. 2006, 80, 20–26. [Google Scholar] [CrossRef] [PubMed]
Construct Name | Primer Sequence (5′→3′) a |
---|---|
RdRp (RHDV)_His6 | F: ATGACGTCAAACTTCTTCTGTGG |
R: TATCCTCGAGCTCCATAACATTCACAAATTCGTC | |
RdRp (RCV)_His6 | F: ATGACTGCAAACTTCTTCTGTG |
R: TATCCTCGAGCTCCATAACATTCACAAAATCGTC | |
RdRp (NoV)_His6 | F: TTTAAGAAGGAGATATACATATGGGAGGTGACAGTAAAGGGAC |
R: CAGTGGTGGTGGTGGTGGTGCTCGAGCTCGACGCCATCTTCATTC |
Biochemical Property | RHDV RdRp | RCV RdRp | NoV RdRp |
---|---|---|---|
Vmax (pg(dsRNA) × min −1 × ng(RdRp) −1) at 30 °C | 4.0 ± 0.4 | 13.4 ± 1.5 | 4.1 ± 0.6 |
Vmax (pg(dsRNA) × min −1 × ng(RdRp) −1) at 42 °C (RHDV/RCV) or 37 °C (NoV) | 6.6 ± 0.6 | 30.3 ± 1.3 | 5.8 ± 0.3 |
Km (poly(C)) (ng/μL) at 30 °C | 0.5 ± 0.1 | 0.9 ± 0.2 | 3.6 ± 0.6 |
Km (rGTP), Michaelis-Menten model (μM) at 30 °C | 14.6 ± 2.4 | 5.7 ± 0.7 | 77.7 ± 14.5 |
Km (rGTP), substrate inhibition model (μM) at 30 °C | 19.1 ± 3.8 | 8.0 ± 0.8 | 448.8 ± 120.4 |
Ki (rGTP), substrate inhibition model (mM) at 30 °C | 2.1 ± 0.4 | 1.7 ± 0.2 | 0.6 ± 0.2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urakova, N.; Netzler, N.; Kelly, A.G.; Frese, M.; White, P.A.; Strive, T. Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors. Viruses 2016, 8, 100. https://doi.org/10.3390/v8040100
Urakova N, Netzler N, Kelly AG, Frese M, White PA, Strive T. Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors. Viruses. 2016; 8(4):100. https://doi.org/10.3390/v8040100
Chicago/Turabian StyleUrakova, Nadya, Natalie Netzler, Andrew G. Kelly, Michael Frese, Peter A. White, and Tanja Strive. 2016. "Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors" Viruses 8, no. 4: 100. https://doi.org/10.3390/v8040100
APA StyleUrakova, N., Netzler, N., Kelly, A. G., Frese, M., White, P. A., & Strive, T. (2016). Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors. Viruses, 8(4), 100. https://doi.org/10.3390/v8040100