Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment
Abstract
:1. Introduction
2. Normal Wound Healing
3. Diabetic Foot Ulcers (DFUs)
4. Hydrogel Wound Dressings for DFU Treatment
4.1. Natural DFU Hydrogel Dressings
4.1.1. Collagen and Gelatin Hydrogels
4.1.2. Chitosan Hydrogels
4.1.3. Alginate Hydrogels
Ref. | Year | Polymer Source and Material | Additional Functional Component (s) | Synthesis Method | Diabetic Model | Therapeutic Effect |
---|---|---|---|---|---|---|
[59] | 2022 | Sodium alginate (2% w/v) hydrogel | Deferoxamine (560 μg/mL) and copper nanoparticles (200 μg/mL) | Ionic crosslinking with 0.1M CaCl2 | STZ-induced male C57BL/6 mice | Enhanced antimicrobial effect as well as angiogenesis by upregulation of HIF-1α and VEGF. Reduced inflammatory response. |
[60] | 2021 | Sodium alginate/pectin (5% w/w) composite hydrogel | Simvastatin (20 mg/mL) | Combined solvent-casting and ionic crosslinking with 0.5% w/v CaCl2 | STZ-induced male Wistar rats | Accelerated wound closure due to the presence of SIM, which promoted re-epithelialization, fibroblast proliferation and collagen production. |
[61] | 2021 | Silk nanofiber (1 wt%) hydrogel | Deferoxamine (60 μM and 120 μM) | Concentration-dilution-thermal incubation method | STZ-induced male Sprague−Dawley rats | Enhanced collagen deposition and wound healing rates: 80% on day 14, and 100% on day 21. Improved angiogenic and inflammatory responses. |
[57] | 2020 | Sodium alginate (2–5% w/v) hydrogel | Polydeoxyribonucleotide (100 μg/mL) | Ionic crosslinking with CaCO3 | Male C57BLKS/J-db/db mice | Improved re-epithelialization and granulation tissue formation. Increased collagen production and angiogenesis. |
[62] | 2019 | Sodium alginate (1.5% w/w) hydrogel | Edaravone-loaded Eudragit nanoparticles | Ionic crosslinking with 0.5% w/w CaCl2 | STZ-induced male C57BL/6 mice | Downregulation of reactive oxygen species favored accelerated wound healing. |
[43] | 2019 | Gelatin (4% w/v)/hyaluronic acid (0.1% w/v) composite hydrogel | Thrombomodulin (9 and 15 μg) | Chemical crosslinking (0.05% EDC) | STZ-induced male C57BL/6JNarl mice | Enhanced granulation tissue formation, re-epithelialization, collagen deposition, and angiogenesis. |
[46] | 2018 | Chitosan (6% w/v) hydrogel | D-(+) raffinose pentahydrate (290 mM) | Physical crosslinking in alkaline solution (8% w/v KOH) | STZ-induced female Wistar rats | Increased bactericidal effect and accelerated wound healing. |
[52] | 2017 | Chitosan (2 wt. %) hydrogel | L-glutamic acid (0.25–1.0%) | Physical crosslinking in alkaline solution (1M NaOH) | STZ-induced male Wistar rats | Enhanced re-epithelialization, collagen deposition, and neovascularization. |
[39] | 2016 | Chitosan/starch hydrogel | Chitosan silver nanoparticles (5 ppm Ag in 6.9 mg/mL chitosan) | Reductive alkylation crosslinking | Alloxan-induced male albino rats | Significantly improved wound healing rate. Increased bactericidal response. |
[39] | 2016 | Collagen/alginate (50/50 w/w) hydrogel | Curcumin (1 wt.%) -loaded chitosan nanoparticles | Chemical crosslinking (EDC) | STZ-induced male Wistar rats | Reduced inflammation. Enhanced cell adhesion and proliferation. Accelerated wound closure. |
[63] | 2016 | Gelatin/hydroxyphenyl propionic acid hydrogel (5 wt%) | Interleukin-8 (IL-8, 0.5 μg/mL) or macrophage inflammatory protein-3α (MIP-3α, 1 μg/mL) | Horseradish peroxidase (HRP)-catalyzed cross-linking | STZ-induced male ICR mice | Increased cell infiltration, re-epithelialization, neovascularization, and collagen deposition. |
4.2. Synthetic and Semi-Synthetic DFU Hydrogel Dressings
4.2.1. Polyethylene Glycol (PEG)-Based Systems
Ref. | Year | Polymer Source and Material | Additional Functional Component(s) | Synthesis Method | Diabetic Model | Therapeutic Effect |
---|---|---|---|---|---|---|
[69] | 2022 | Methacrylate gelatin (GelMA)/PEGDA microneedle patch | Tazarotene (1 mg/10 mL) and exosomes (100 µg/mL) from human umbilical vein endothelial cells (HUVECs) | Photopolymerization with lithium acylphosphinate salt (LAP 0.05%, g/mL) | STZ-induced male C57BL mice | Accelerated collagen deposition, epithelial regeneration, and angiogenesis. |
[70] | 2022 | PLGA-PEG-PLGA thermosensitive hydrogel | Copper-based MOFs containing curcumin and metformin hydrochloride | Thermal gelation | STZ-induced male BALB/c mice | Significant reduction of oxidative stress; enhanced cell migration, neovascularization, and collagen formation. |
[71] | 2022 | Injectable hydrogel prepared from 4,5-imidazoledicarboxylic acid, zinc nitrate hexahydrate, deferoxamine mesylate and glucose oxidase (GOX) | Deferoxamine mesylate (DFO, 8.3 µg/mL) | Phase- transfer-mediated programmed GOX loading | STZ-induced female BALB/c mice | Release of zinc ions and DFO resulted in enhanced antibacterial and angiogenic effect. Significant induction of re-epithelialization and collagen deposition. |
[72] | 2022 | PDLLA-PEG-PDLLA (25% w/v) thermosensitive hydrogel | Prussian blue nanoparticles (PBNPs, 333.3 µg/mL and 666.6 µg/mL) | Thermal gelation | STZ-induced C57BL/6J mice | Decreased reactive oxygen species (ROS) production as well as IL-6 and TNF-α levels. PBNPs dose-dependent accelerated wound closure. |
[73] | 2022 | pH/glucose dual responsive hydrogel prepared from dihydrocaffeic acid and L-Arginine co-grafting chitosan, phenylboronic acid and benzaldehyde difunctional polyethylene glycol-co-poly(glycerol sebacic acid) and polydopamine-coated graphene oxide (GO) | Metformin (2 mg/mL) | Double dynamic bond of a Schiff-base and phenylboronate ester | STZ-induced Sprague−Dawley rats | Antibacterial properties, tissue adhesion, hemostasis. Decreased inflammatory response. Increased wound closure ratio, re-epithelialization, and regeneration of blood vessels. |
[74] | 2022 | Supramolecular guanosine-quadruplex hydrogel | Hemin (0.36–0.54 mg) and GOX (0.125–0.5 mg) | Self-assembled gelation | STZ-induced male BABL/c mice | Significantly faster antibacterial effect, relative to commercial antibiotic. Decreased glucose concentration in the wound. |
[75] | 2022 | Chitosan/polyvinyl acetate heterogeneous hydrogel | Human epidermal growth factor (EGF)-loaded nanoparticles, polyhexamethylene biguanide, and perfluorocarbon emulsions | Freeze-thaw cycling | STZ-induced Sprague-Dawley rats | High antibacterial and anti-inflammatory effect. Enhanced collagen production and wound closure efficiency, relative to commercial dressings. |
[76] | 2022 | Double-layered GelMA-PLL hydrogel | Vascular endothelial growth factor (VEGF)-mimetic peptide | Photopolymerization with lithium acylphosphinate salt (LAP) | STZ-induced Sprague-Dawley rats | Enhanced antibacterial and wound-healing effect. Improved collagen deposition, angiogenesis, and re-vascularization. |
[77] | 2022 | Oxidized alginate / platelet-rich plasma (PRP) fibrin hydrogel | Ionic crosslinking with 1.22 M CaSO4·2H2O | Male db/db (BKS.Cg-m+/+Leprdb/J) mice | Accelerated wound maturation and closure. | |
[78] | 2022 | PTFE/PU patch | Calcium-alginate hydrogel microparticles (MPs) containing Chlorella vulgaris and Bacillus licheniformis | MP encapsulation in porous PTFE membrane (inner lining) and a transparent PU film (back lining) | STZ-induced mice | Enhanced wound healing effect: 50% wound closure by day 3, and full wound closure on day 12. |
[79] | 2021 | GelMA (10% w/v) hydrogel | Bioactive glass particles loaded with cerium (1% w/v) | Photopolymerization with LAP (0.1% w/v) | STZ-induced Sprague-Dawley rats | Wound closure of almost 95% on day 21. |
[80] | 2021 | Cecropin-modified hyaluronic acid/ oxidized dextran / PRP composite hydrogel | Schiff base reaction | Male db/db mice | Accelerated healing of infected wounds. Shortened inflammatory stage. Increased mature collagen content. | |
[81] | 2021 | Pluronic F-127 (20%) hydrogel | Ag nanocubes with virus-like mesoporous silica containing gentamicin | Thermal gelation | STZ-induced Kunming mice | Bacterial infected wounds were fully healed by day 20, with enhanced collagen production. |
[82] | 2021 | Carboxymethyl chitosan/poly(dextran-g-4-formylbenzoic acid) hydrogel | Peptide-modified PAN nanofibers | Schiff base reaction | Diabetic ICR mice | Enhanced antibacterial and angiogenic effect. Reduced inflammatory response. Wound closure > 96% at day 14. |
[83] | 2021 | Hydroxyl propyl methyl cellulose (2% w/w) hydrogel | Lipid nanoparticles loaded with Valsartan (1% w/w) | Thermal gelation | STZ-induced male Sprague-Dawley rats | Enhanced healing response mediated through COX-2, NF-κB, NO, TGF-β, MMPs and VEGF pathways. |
[84] | 2021 | Polyacrylamide/gelatin/ε-polylysine composite hydrogel | Free-radical polymerization | STZ-induced male Sprague-Dawley rats | Increased granulation tissue formation, collagen deposition, and angiogenesis. Enhanced antibacterial effect. | |
[85] | 2021 | Conductive hydrogel made from acrylamide-co-polymerized ionic liquid (VAPimBF4) and konjac glucomannan | Chemical crosslinking (EDC/NHS chemistry) | STZ-induced male Kunming mice | Highest wound healing rate when coupled with electrical stimulation. Increased antibacterial effect, Col-1 production, and new vessel growth. | |
[86] | 2021 | N-carboxyethyl chitosan/adipic acid dihydrazide pH responsive hydrogel | Insulin (0.67 U/mL) | Crosslinking by hyaluronic acid-aldehyde (imine and acylhydrazone bonds) | STZ-induced male Sprague-Dawley rats | Significant reduction of glucose levels in the wound. Decreased inflammation phase. Increased granulation tissue formation, collagen deposition, and re-epithelialization. |
[87] | 2021 | Quaternized chitosan/oxidized hyaluronic acid self-healing hydrogel | α-lipoic acid-loaded MOFs | Schiff base reaction | STZ-induced male Sprague-Dawley rats | Increased collagen deposition, cell proliferation and neovascularization. Accelerated wound healing. |
[88] | 2021 | Chitosan/polyvinyl acetate hydrogel | Chitosan nanoparticles loaded with human epidermal growth factor (EGF, 60 µg/mL) and Ag+ ions | Freeze-thaw cycling | STZ-induced Sprague-Dawley rats | Remarkable antibacterial effect. Enhanced tissue maturation and wound closure: 40% on day 3, and 97% on day 14. |
[89] | 2021 | Pluronic F-127 (20% w/v) hydrogel | Sodium ascorbyl phosphate (400 μM) and Wharton’s jelly mesenchymal stem cells (WJMSC) | Thermal gelation | STZ-induced male Sprague-Dawley rats | Shortened inflammatory response. Improved dermis regeneration, neovascularization, and collagen deposition. |
[90] | 2020 | Supramolecular hydrogel based on ferrocene, hyaluronic acid, β-cyclodextrin, and rhein | Intermolecular π−π interactions and hydrogen bonds | STZ-induced C57 mice | Anti-inflammatory properties of rhein facilitated transition from the inflammatory phase into the proliferation phase, thus, favoring normal wound healing. | |
[91] | 2020 | Pluronic F-127 hydrogel | Exosomes derived from human umbilical cord MSCs (300 μg/mL) | Thermal gelation | STZ-induced male Sprague-Dawley rats | Increased vascularization of wound granulation tissue, shortening wound healing time. Improved epithelial regeneration. |
[92] | 2020 | 4-carboxybenzaldehyde-PEG/glycol chitosan/silk fibroin/PRP self-healing hydrogel | Schiff base reaction + crosslinking with 10% calcium gluconate | STZ-induced Sprague-Dawley rats | Enhanced angiogenesis, re-epithelialization, nerve repair, and wound healing rate. | |
[93] | 2020 | Chitosan/polyurethane hydrogel membrane | Bone marrow mononuclear cells (1 × 106) injected into the edge of the wound prior to hydrogel application | Chemical crosslinking (urea/urethane bonds) | STZ-induced female Wistar rats | Hemostatic and anti-inflammatory effect. Wound closure > 90% after 14 days. |
[94] | 2020 | Stimuli-responsive supramolecular hydrogel made from polyvinyl alcohol/N-carboxyethyl chitosan/agarose/Ag nanowires | Hydrogen bonding | STZ-induced male Sprague-Dawley rats | Bactericidal effect. Promoted angiogenesis and collagen deposition. Accelerated wound healing rate. | |
[95] | 2020 | Poly(N-isopropyl-acrylamide)/poly(γ-glutamic acid) hydrogel (20 mg/mL total concentration) | Superoxide dismutase (2 mg/mL) | Thermal gelation | STZ-induced male Sprague-Dawley rats | Reduced inflammation. Enhanced collagen production and epidermal formation. |
[96] | 2020 | N-carboxyethyl chitosan (7.5% w/v)/adipic acid dihydrazide (7.5% w/v)/hyaluronic acid-aldehyde (5% w/v) composite hydrogel | Encapsulated bone marrow mesenchymal stem cells (2 × 105) | Crosslinking by hyaluronic acid-aldehyde (imine and acylhydrazone bonds) | STZ-induced male Sprague-Dawley rats | Inhibited chronic inflammation. Enhanced formation of granulation tissue, cell proliferation and neovascularization. |
[97] | 2020 | γ-polyglutamic acid (0.5 g/mL) hydrogel | Human cell-free fat extract (5 mg/mL) | Chemical crosslinking (EDC/NHS chemistry) | Male BKS-Leprem2Cd479/Nju mice | Improved cell proliferation, collagen deposition and continuous epidermal formation. Significant angiogenesis. |
[98] | 2020 | Silk fibroin-polyvinyl pyrrolidone hydrogel | L-carnosine and curcumin | Mixing/vortex shearing (physical crosslinking) | STZ-induced BALB/c mice | Significant antibacterial and anti-inflammatory effect. Enhanced wound healing. |
[99] | 2020 | [2-(methacryloloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA)/2-Hydroxyethyl methacrylate (HEMA) and 3-[[2-(Methacryloyloxy)ethyl] dimethylammonio] propionate (CBMA)/HEMA zwitterionic cryogels | miRNA146a-conjugated cerium oxide nanoparticles | Free-radical polymerization with 13.6 mg/mL ammonium persulfate | Db/Db female mice | Full wound healing on day 14. Downregulation of inflammatory markers. Increased Col1a2 expression. |
[100] | 2020 | Polyvinyl alcohol (8% w/v)/sodium alginate (1% w/v) hydrogel | Green tea polyphenol nanoparticles | Ionic crosslinking (CaCl2, 100 μg/mL) and hydrogen bonding | STZ-induced female Sprague-Dawley rats | Increased granulation tissue formation and collage deposition. Accelerated wound healing. |
[101] | 2019 | Chitosan/PEG hydrogel | Ag nanoparticles | Chemical crosslinking with glutaraldehyde | Alloxan-induced rabbits | Increased bactericidal effect. Accelerated re-epithelialization and collagen deposition. Full wound closure on day 14. |
[102] | 2018 | A5G81-modified poly(polyethylene glycol cocitric acid-co-N-isopropylacrylamide) hydrogel | Thermal gelation | B6.BKS(D)-Leprdb/J mice | Enhanced re-epithelialization and granulation tissue formation. Faster wound closure than that achieved with commercial dressings. | |
[103] | 2018 | Hyperbranched PEG/thiolated hyaluronic acid injectable hydrogel | Encapsulated adipose-derived stem cells (2.5 × 106 cell/mL) | thiol-ene click reaction | STZ-induced male Sprague-Dawley rats | Reduced inflammatory response. Increased angiogenesis and re-epithelialization. |
[104] | 2017 | Polymethyl methacrylate/Polyvinyl alcohol hydrogel particles | Collagen, Ag nanowires, and chitosan | UV photocrosslinking (Irgacure 184) | STZ-induced male Wistar ratsSTZ-induced Landrace pigs | Enhanced collagen production and epidermal cell migration. Reduced inflammatory response. |
[105] | 2017 | Phenylboronic-modified chitosan (1.2 wt%)/poly(vinyl alcohol) (0.6 wt%)/benzaldehyde-capped PEG (0.6 wt%) hydrogel | Insulin (0.3 wt%) and L929 fibroblasts (1.2 × 106 cells/mL) | Schiff base reaction | STZ-induced Sprague-Dawley rats | Improved control of glucose levels in wound. Increased neovascularization and collagen deposition. Enhanced wound closure rate. |
[106] | 2016 | Sodium carboxymethylcellulose/propylene glycol hydrogel | Blechnum orientale extract (2–4% wt) | Hydrogen bonding | STZ-induced male Sprague-Dawley rats | Significant bactericidal and antioxidative effect. Enhanced re-epithelialization, fibroblast proliferation, collagen synthesis, and angiogenesis. |
[107] | 2016 | Gelatin methacrylate (15% w/v) hydrogel | Desferrioxamine (1% w/v) | UV photocrosslinking with Irgacure 2959 (0.5% w/v) | STZ-induced male Sprague-Dawley rats | Accelerated neovascularization, granulation tissue remodeling, and wound closure. |
4.2.2. Polyvinyl Alcohol (PVA)-Based Systems
4.2.3. Gelatin-Based Systems
4.2.4. Chitosan-Based Systems
4.2.5. Plasma-Based Systems
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2013, 37 (Suppl. S1), S81–S90. [Google Scholar]
- International Diabetes Federation. IDF Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Schmidt, A.M. Highlighting Diabetes Mellitus: The Epidemic Continues. Arterioscler. Thromb. Vasc. Biol. 2018, 38, e1–e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fard, A.S.; Esmaelzadeh, M.; Larijani, B. Assessment and treatment of diabetic foot ulcer. Int. J. Clin. Pract. 2007, 61, 1931–1938. [Google Scholar] [CrossRef]
- Hinchliffe, R.J.; Andros, G.; Apelqvist, J.; Bakker, K.; Friederichs, S.; Lammer, J.; Lepantalo, M.; Mills, J.; Reekers, J.; Shearman, C.P.; et al. A systematic review of the effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral arterial disease. Diabetes/Metab. Res. Rev. 2012, 28, 179–217. [Google Scholar] [CrossRef]
- Lebrun, E.; Tomic-Canic, M.; Kirsner, R.S. The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair Regen. 2010, 18, 433–438. [Google Scholar] [CrossRef]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. Biomedicine 2015, 5, 22. [Google Scholar] [CrossRef]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.; Simões, S.; Ascenso, A.; Reis, C.P. Therapeutic advances in wound healing. J. Dermatol. Treat. 2020, 33, 2–22. [Google Scholar] [CrossRef]
- Dumville, J.C.; O’Meara, S.; Deshpande, S.; Speak, K. Hydrogel dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev. 2013, 7, CD009101. [Google Scholar] [CrossRef] [Green Version]
- Morton, L.M.; Phillips, T.J. Wound healing update. Semin. Cutan. Med. Surg. 2012, 31, 33–37. [Google Scholar] [CrossRef] [PubMed]
- David, V.A.S.; Güiza-Argüello, V.R.; Arango-Rodríguez, M.L.; Sossa, C.L.; Becerra-Bayona, S.M. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front. Bioeng. Biotechnol. 2022, 10, 821852. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Barbul, A. Understanding the role of immune regulation in wound healing. Am. J. Surg. 2004, 187, 11S–16S. [Google Scholar] [CrossRef]
- Goldberg, S.R.; Diegelmann, R.F. Wound healing primer. Surg. Clin. N. Am. 2010, 90, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, L.J.; Page-McCaw, A. A secreted MMP is required for reepithelialization during wound healing. Mol. Biol. Cell 2012, 23, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Caley, M.P.; Martins, V.L.; O’Toole, E.A. Metalloproteinases and Wound Healing. Adv. Wound Care 2015, 4, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Favila, A.; Martinez-Fierro, M.L.; Rodriguez-Lazalde, J.G.; Cid-Baez, M.A.; Zamudio-Osuna, M.D.J.; Martinez-Blanco, M.d.R.; Mollinedo-Montaño, F.E.; Rodriguez-Sanchez, I.P.; Castañeda-Miranda, R.; Garza-Veloz, I. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina 2019, 55, 714. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; DiPietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Martin, P.; Nunan, R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 2015, 173, 370–378. [Google Scholar] [CrossRef]
- Straccia, M.C.; D’Ayala, G.G.; Romano, I.; Oliva, A.; Laurienzo, P. Alginate Hydrogels Coated with Chitosan for Wound Dressing. Mar. Drugs 2015, 13, 2890–2908. [Google Scholar] [CrossRef] [Green Version]
- Koehler, J.; Verheyen, L.; Hedtrich, S.; Brandl, F.P.; Goepferich, A.M. Alkaline poly(ethylene glycol)-based hydrogels for a potential use as bioactive wound dressings. J. Biomed. Mater. Res. Part A 2017, 105, 3360–3368. [Google Scholar] [CrossRef]
- Kumar, A.; Wang, X.; Nune, K.C.; Misra, R. Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing. Int. Wound J. 2017, 14, 1076–1087. [Google Scholar] [CrossRef]
- Ribeiro, M.; Espiga, A.; Silva, D.; Henriques, J.; Ferreira, C.; Silva, J.; Pires, E.; Chaves, P. Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen. 2009, 17, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Paladini, F.; Meikle, S.T.; Cooper, I.R.; Lacey, J.; Perugini, V.; Santin, M. Silver-doped self-assembling di-phenylalanine hydrogels as wound dressing biomaterials. J. Mater. Sci. Mater. Med. 2013, 24, 2461–2472. [Google Scholar] [CrossRef]
- Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185–199. [Google Scholar] [CrossRef]
- Helary, C.; Zarka, M.; Giraud-Guille, M.M. Fibroblasts within concentrated collagen hydrogels favour chronic skin wound healing. J. Tissue Eng. Regen. Med. 2011, 6, 225–237. [Google Scholar] [CrossRef]
- Thi, P.L.; Lee, Y.; Tran, D.L.; Thi, T.T.H.; Kang, J.I.; Park, K.M.; Park, K.D. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomater. 2020, 103, 142–152. [Google Scholar] [CrossRef]
- Basu, A.; Celma, G.; Strømme, M.; Ferraz, N. In Vitro and in Vivo Evaluation of the Wound Healing Properties of Nanofibrillated Cellulose Hydrogels. ACS Appl. Bio Mater. 2018, 1, 1853–1863. [Google Scholar] [CrossRef]
- Kang, J.I.; Park, K.M.; Park, K.D. Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing. J. Ind. Eng. Chem. 2019, 69, 397–404. [Google Scholar] [CrossRef]
- Xie, Y.; Liao, X.; Zhang, J.; Yang, F.; Fan, Z. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Int. J. Biol. Macromol. 2018, 119, 402–412. [Google Scholar] [CrossRef]
- Jafari, A.; Hassanajili, S.; Azarpira, N.; Karimi, M.B.; Geramizadeh, B. Development of thermal-crosslinkable chitosan/maleic terminated polyethylene glycol hydrogels for full thickness wound healing: In vitro and in vivo evaluation. Eur. Polym. J. 2019, 118, 113–127. [Google Scholar] [CrossRef]
- Sung, J.H.; Hwang, M.R.; Kim, J.O.; Lee, J.H.; Kim, Y.I.; Kim, J.H.; Chang, S.W.; Jin, S.G.; Kim, J.A.; Lyoo, W.S.; et al. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int. J. Pharm. 2010, 392, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Haycocks, S.; Chadwick, P.; Cutting, K. Collagen matrix wound dressings and the treatment of DFUs. J. Wound Care 2013, 22, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Chen, P.; Li, Y.; Wang, X.; Tang, S. Collagen hydrogel dressing for wound healing and angiogenesis in diabetic rat models. Int. J. Clin. Exp. Med. 2017, 10, 16319–16327. [Google Scholar]
- Nilforoushzadeh, M.A.; Sisakht, M.M.; Amirkhani, M.A.; Seifalian, A.M.; Banafshe, H.R.; Verdi, J.; Nouradini, M. Engineered skin graft with stromal vascular fraction cells encapsulated in fibrin–collagen hydrogel: A clinical study for diabetic wound healing. J. Tissue Eng. Regen. Med. 2019, 14, 424–440. [Google Scholar] [CrossRef] [PubMed]
- Djavid, G.E.; Tabaie, S.M.; Tajali, S.B.; Totounchi, M.; Farhoud, A.; Fateh, M.; Ghafghazi, M.; Koosha, M.; Taghizadeh, S. Application of a collagen matrix dressing on a neuropathic diabetic foot ulcer: A randomised control trial. J. Wound Care 2020, 29, S13–S18. [Google Scholar] [CrossRef] [PubMed]
- Karri, V.V.S.R.; Kuppusamy, G.; Talluri, S.V.; Mannemala, S.S.; Kollipara, R.; Wadhwani, A.D.; Mulukutla, S.; Raju, K.R.S.; Malayandi, R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 2016, 93, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z.Y.; Cui, W.; Annabi, N.; Ng, K.W.; Dokmeci, M.R.; Ghaemmaghami, A.M.; Khademhosseini, A. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Adv. Health Mater. 2016, 5, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Jahan, I.; George, E.; Saxena, N.; Sen, S. Silver-Nanoparticle-Entrapped Soft GelMA Gels as Prospective Scaffolds for Wound Healing. ACS Appl. Bio Mater. 2019, 2, 1802–1814. [Google Scholar] [CrossRef]
- Ikada, Y.; Tabata, Y. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 1998, 31, 287–301. [Google Scholar]
- Hsu, Y.-Y.; Liu, K.-L.; Yeh, H.-H.; Lin, H.-R.; Wu, H.-L.; Tsai, J.-C. Sustained release of recombinant thrombomodulin from cross-linked gelatin/hyaluronic acid hydrogels potentiate wound healing in diabetic mice. Eur. J. Pharm. Biopharm. 2018, 135, 61–71. [Google Scholar] [CrossRef]
- Zheng, Y.; Liang, Y.; Zhang, D.; Sun, X.; Liang, L.; Li, J.; Liu, Y.-N. Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega 2018, 3, 4766–4775. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.N.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Intini, C.; Elviri, L.; Cabral, J.; Mros, S.; Bergonzi, C.; Bianchera, A.; Flammini, L.; Govoni, P.; Barocelli, E.; Bettini, R.; et al. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr. Polym. 2018, 199, 593–602. [Google Scholar] [CrossRef]
- Jiang, T.; James, R.; Kumbar, S.G.; Laurencin, C.T. Chitosan as a Biomaterial: Structure, Properties, and Applications in Tissue Engineering and Drug Delivery. In Natural and Synthetic Biomedical Polymers; Kumbar, S.G., Laurencin, C.T., Deng, M., Eds.; Elsevier: Oxford, UK, 2014; pp. 91–113. [Google Scholar]
- Thapa, B.; Narain, R. Mechanism, current challenges and new approaches for non viral gene delivery. In Polymers and Nanomaterials for Gene Therapy; Narain, R., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 1–27. [Google Scholar]
- Ahmad, M.; Zhang, B.; Manzoor, K.; Ahmad, S.; Ikram, S. Chitin and chitosan-based bionanocomposites. In Bionanocomposites; Zia, K.M., Jabeen, F., Anjum, M.N., Ikram, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–156. [Google Scholar]
- El-Naggar, M.Y.; Gohar, Y.M.; Sorour, M.A.; Waheeb, M.G. Hydrogel Dressing with a Nano-Formula against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Diabetic Foot Bacteria. J. Microbiol. Biotechnol. 2016, 26, 408–420. [Google Scholar] [CrossRef]
- Bettini, R.; Romani, A.A.; Morganti, M.M.; Borghetti, A.F. Physicochemical and cell adhesion properties of chitosan films prepared from sugar and phosphate-containing solutions. Eur. J. Pharm. Biopharm. 2008, 68, 74–81. [Google Scholar] [CrossRef]
- Thangavel, P.; Ramachandran, B.; Chakraborty, S.; Kannan, R.; Lonchin, S.; Muthuvijayan, V. Accelerated Healing of Diabetic Wounds Treated with L-Glutamic acid Loaded Hydrogels Through Enhanced Collagen Deposition and Angiogenesis: An In Vivo Study. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Sun, J.; Tan, H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef]
- Sharmeen, S.; Rahman, M.S.; Islam, M.M.; Islam, M.S.; Shahruzzaman, M.; Mallik, A.K.; Haque, P.; Rahman, M.M. Application of polysaccharides in enzyme immobilization. In Functional Polysaccharides for Biomedical Applications; Maiti, S., Jana, S., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 357–395. [Google Scholar]
- Tellechea, A.; Silva, E.A.; Min, J.; Leal, E.; Auster, M.E.; Pradhan-Nabzdyk, L.; Shih, W.; Mooney, D.; Veves, A. Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing. Int. J. Low. Extrem. Wounds 2015, 14, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.-R.; Han, S.W.; Kim, J.H.; Lee, B.C.; Kim, J.M.; Hong, J.Y.; Kim, B.J. Polydeoxyribonucleotides Improve Diabetic Wound Healing in Mouse Animal Model for Experimental Validation. Ann. Dermatol. 2019, 31, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.Y.; Park, J.-U.; Choi, M.-H.; Kim, S.; Kim, H.-E.; Jeong, S.-H. Polydeoxyribonucleotide-delivering therapeutic hydrogel for diabetic wound healing. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Naito, R.; Nishinakamura, H.; Watanabe, T.; Nakayama, J.; Kodama, S. Edaravone, a free radical scavenger, accelerates wound healing in diabetic mice. Wounds 2014, 26, 163–171. [Google Scholar] [PubMed]
- Li, S.; Wang, X.; Chen, J.; Guo, J.; Yuan, M.; Wan, G.; Yan, C.; Li, W.; Machens, H.-G.; Rinkevich, Y.; et al. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. Int. J. Biol. Macromol. 2022, 202, 657–670. [Google Scholar] [CrossRef]
- Rezvanian, M.; Ng, S.-F.; Alavi, T.; Ahmad, W. In-vivo evaluation of Alginate-Pectin hydrogel film loaded with Simvastatin for diabetic wound healing in Streptozotocin-induced diabetic rats. Int. J. Biol. Macromol. 2021, 171, 308–319. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, Y.; Guo, P.; Duan, T.; Cheng, W.; Guo, Y.; Zheng, X.; Lu, G.; Lu, Q.; Kaplan, D.L. Injectable Desferrioxamine-Laden Silk Nanofiber Hydrogels for Accelerating Diabetic Wound Healing. ACS Biomater. Sci. Eng. 2021, 7, 1147–1158. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, W.; Lei, Y.; Gaucher, C.; Pei, S.; Zhang, J.; Xia, X. Edaravone-Loaded Alginate-Based Nanocomposite Hydrogel Accelerated Chronic Wound Healing in Diabetic Mice. Mar. Drugs 2019, 17, 285. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.S.; Lee, Y.; Ryu, H.A.; Jang, Y.; Lee, K.-M.; Choi, Y.; Choi, W.J.; Lee, M.; Park, K.M.; Park, K.D.; et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater. 2016, 38, 59–68. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Adhikari, R.; Gadegaard, N. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003, 5, 1–16. [Google Scholar] [CrossRef]
- Alcantar, N.A.; Aydil, E.S.; Israelachvili, J.N. Polyethylene glycol–coated biocompatible surfaces. J. Biomed. Mater. Res. 2000, 51, 343–351. [Google Scholar] [CrossRef]
- Beamish, J.A.; Zhu, J.; Kottke-Marchant, K.; Marchant, R.E. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering. J. Biomed. Mater. Res. Part A 2009, 92, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef] [Green Version]
- Sokic, S.; Christenson, M.; Larson, J.; Papavasiliou, G. In Situ Generation of Cell-Laden Porous MMP-Sensitive PEGDA Hydrogels by Gelatin Leaching. Macromol. Biosci. 2014, 14, 731–739. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, K.; Jiang, T.; Li, S.; Chen, J.; Wu, Z.; Li, W.; Tan, R.; Wei, W.; Yang, X.; et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J. Nanobiotechnol. 2022, 20, 1–18. [Google Scholar] [CrossRef]
- Yang, L.; Liang, F.; Zhang, X.; Jiang, Y.; Duan, F.; Li, L.; Ren, F. Remodeling microenvironment based on MOFs-Hydrogel hybrid system for improving diabetic wound healing. Chem. Eng. J. 2021, 427, 131506. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, W.; Xu, P.; Fu, X.; Yu, X.; Chen, L.; Leng, F.; Yu, C.; Yang, Z. Glucose-responsive multifunctional metal–organic drug-loaded hydrogel for diabetic wound healing. Acta Biomater. 2021, 140, 206–218. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Y.; Ma, R.; Chen, J.; Qiu, J.; Du, S.; Li, C.; Wu, Z.; Yang, X.; Chen, Z.; et al. Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS Appl. Mater. Interfaces 2022, 14, 14059–14071. [Google Scholar] [CrossRef]
- Liang, Y.; Li, M.; Yang, Y.; Qiao, L.; Xu, H.; Guo, B. pH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS Nano 2022, 16, 3194–3207. [Google Scholar] [CrossRef]
- Li, Y.; Su, L.; Zhang, Y.; Liu, Y.; Huang, F.; Ren, Y.; An, Y.; Shi, L.; van der Mei, H.C.; Busscher, H.J. A Guanosine-Quadruplex Hydrogel as Cascade Reaction Container Consuming Endogenous Glucose for Infected Wound Treatment—A Study in Diabetic Mice. Adv. Sci. 2022, 9, 2103485. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Lin, S.-J. Chitosan/PVA Hetero-Composite Hydrogel Containing Antimicrobials, Perfluorocarbon Nanoemulsions, and Growth Factor-Loaded Nanoparticles as a Multifunctional Dressing for Diabetic Wound Healing: Synthesis, Characterization, and In Vitro/In Vivo Evaluation. Pharmaceutics 2022, 14, 537. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, M.; Zhou, D.; Chen, F.; Cai, Q.; Yan, X.; Li, J. Gelatine methacrylamide-based multifunctional bilayer hydrogels for accelerating diabetic wound repair. Mater. Des. 2022, 218, 110687. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Santos-Vizcaino, E.; Sanchez, P.; Gutierrez, F.B.; Aguirre, J.J.; Hernandez, R.M.; Igartua, M. Bioactive and degradable hydrogel based on human platelet-rich plasma fibrin matrix combined with oxidized alginate in a diabetic mice wound healing model. Biomater. Adv. 2022, 135, 112695. [Google Scholar] [CrossRef]
- Chen, H.; Guo, Y.; Zhang, Z.; Mao, W.; Shen, C.; Xiong, W.; Yao, Y.; Zhao, X.; Hu, Y.; Zou, Z.; et al. Symbiotic Algae–Bacteria Dressing for Producing Hydrogen to Accelerate Diabetic Wound Healing. Nano Lett. 2021, 22, 229–237. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Rao, Z.-F.; Liu, Y.-J.; Liu, X.-S.; Liu, Y.-F.; Xu, L.-J.; Wang, Z.-Q.; Guo, J.-Y.; Zhang, L.; Dong, Y.-S.; et al. Multifunctional Injectable Hydrogel Loaded with Cerium-Containing Bioactive Glass Nanoparticles for Diabetic Wound Healing. Biomolecules 2021, 11, 702. [Google Scholar] [CrossRef]
- Wei, S.; Xu, P.; Yao, Z.; Cui, X.; Lei, X.; Li, L.; Dong, Y.; Zhu, W.; Guo, R.; Cheng, B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater. 2021, 124, 205–218. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, S.; Li, Y.; Luo, Q.; Lin, J.; Hu, L.; Liu, X.; Xue, F. Virus-like mesoporous silica-coated plasmonic Ag nanocube with strong bacteria adhesion for diabetic wound ulcer healing. Nanomed. Nanotechnol. Biol. Med. 2021, 34, 102381. [Google Scholar] [CrossRef]
- Qiu, W.; Han, H.; Li, M.; Li, N.; Wang, Q.; Qin, X.; Wang, X.; Yu, J.; Zhou, Y.; Li, Y.; et al. Nanofibers reinforced injectable hydrogel with self-healing, antibacterial, and hemostatic properties for chronic wound healing. J. Colloid Interface Sci. 2021, 596, 312–323. [Google Scholar] [CrossRef]
- El-Salamouni, N.S.; Gowayed, M.A.; Seiffein, N.L.; Moneim, R.A.A.; Kamel, M.A.; Labib, G.S. Valsartan solid lipid nanoparticles integrated hydrogel: A challenging repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo experimental study. Int. J. Pharm. 2020, 592, 120091. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Zhao, Y.; Feng, Y.; Zvyagin, A.V.; Wang, J.; Yang, X.; Yang, B.; Lin, Q. Novel Diabetic Foot Wound Dressing Based on Multifunctional Hydrogels with Extensive Temperature-Tolerant, Durable, Adhesive, and Intrinsic Antibacterial Properties. ACS Appl. Mater. Interfaces 2021, 13, 26770–26781. [Google Scholar] [CrossRef]
- Liu, P.; Jin, K.; Wong, W.; Wang, Y.; Liang, T.; He, M.; Li, H.; Lu, C.; Tang, X.; Zong, Y.; et al. Ionic liquid functionalized non-releasing antibacterial hydrogel dressing coupled with electrical stimulation for the promotion of diabetic wound healing. Chem. Eng. J. 2021, 415, 129025. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Liu, H.; Ren, M.; Wang, Z.; Wang, X.; Liu, H.; Feng, Y.; Lin, Q.; Wang, C.; et al. pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing. Mater. Des. 2021, 210, 110104. [Google Scholar] [CrossRef]
- Li, Q.; Liu, K.; Jiang, T.; Ren, S.; Kang, Y.; Li, W.; Yao, H.; Yang, X.; Dai, H.; Chen, Z. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing. Mater. Sci. Eng. C 2021, 131, 112519. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Hong, Y.-L.; Wu, T.-L. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111385. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Chen, X.; Niu, Y.; Huang, S.; Wang, J.; Luo, M.; Shi, G.; Huang, J. Wharton’s jelly mesenchymal stem cells embedded in PF-127 hydrogel plus sodium ascorbyl phosphate combination promote diabetic wound healing in type 2 diabetic rat. Stem Cell Res. Ther. 2021, 12, 559. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, X.; Zhang, R.; Zhang, K.; Li, Y.; Xu, F.-J. Self-Assembled Herbal Medicine Encapsulated by an Oxidation-Sensitive Supramolecular Hydrogel for Chronic Wound Treatment. ACS Appl. Mater. Interfaces 2020, 12, 56898–56907. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Pan, D.; Li, H.; Shen, J. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. Int. J. Nanomed. 2020, 15, 5911–5926. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, H.; Bai, Y.; Wang, Y.; Tao, L.; Wei, Y.; Fan, Y.; Guo, X.; Liu, H. Improving Chronic Diabetic Wound Healing through an Injectable and Self-Healing Hydrogel with Platelet-Rich Plasma Release. ACS Appl. Mater. Interfaces 2020, 12, 55659–55674. [Google Scholar] [CrossRef]
- Viezzer, C.; Mazzuca, R.; Machado, D.C.; Forte, M.M.D.C.; Ribelles, J.L.G. A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model. Carbohydr. Polym. 2020, 231, 115734. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Li, Q.; Yang, L.; Liu, H.; Yan, R.; Xiao, L.; Liu, H.; Wang, J.; Yang, B.; et al. Transparent Conductive Supramolecular Hydrogels with Stimuli-Responsive Properties for On-Demand Dissolvable Diabetic Foot Wound Dressings. Macromol. Rapid Commun. 2020, 41, e2000441. [Google Scholar] [CrossRef]
- Dong, Y.; Zhuang, H.; Hao, Y.; Zhang, L.; Yang, Q.; Liu, Y.; Qi, C.; Wang, S. Poly(N-Isopropyl-Acrylamide)/Poly(gamma-Glutamic Acid) Thermo-Sensitive Hydrogels Loaded with Superoxide Dismutase for Wound Dressing Application. Int. J. Nanomed. 2020, 15, 1939–1950. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.; Kyu-Cheol, N.; Wang, Z.; Cui, Y.; Liu, H.; Liu, H.; Feng, Y.; Zhao, Y.; Lin, Q.; Li, Z. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers. J. Tissue Eng. 2020, 11, 204173142094724. [Google Scholar] [CrossRef]
- Yin, M.; Wang, X.; Yu, Z.; Wang, Y.; Wang, X.; Deng, M.; Zhao, D.; Ji, S.; Jia, N.; Zhang, W. γ-PGA hydrogel loaded with cell-free fat extract promotes the healing of diabetic wounds. J. Mater. Chem. B 2020, 8, 8395–8404. [Google Scholar] [CrossRef]
- Sonamuthu, J.; Cai, Y.; Liu, H.; Kasim, M.S.M.; Vasanthakumar, V.R.; Pandi, B.; Wang, H.; Yao, J. MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. Int. J. Biol. Macromol. 2020, 153, 1058–1069. [Google Scholar] [CrossRef]
- Sener, G.; Hilton, S.A.; Osmond, M.J.; Zgheib, C.; Newsom, J.P.; Dewberry, L.; Singh, S.; Sakthivel, T.S.; Seal, S.; Liechty, K.W.; et al. Injectable, self-healable zwitterionic cryogels with sustained microRNA—Cerium oxide nanoparticle release promote accelerated wound healing. Acta Biomater. 2019, 101, 262–272. [Google Scholar] [CrossRef]
- Chen, G.; He, L.; Zhang, P.; Zhang, J.; Mei, X.; Wang, D.; Zhang, Y.; Ren, X.; Chen, Z. Encapsulation of green tea polyphenol nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway. Mater. Sci. Eng. C 2020, 110, 110686. [Google Scholar] [CrossRef]
- Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 2019, 559, 23–36. [Google Scholar] [CrossRef]
- Zhu, Y.; Cankova, Z.; Iwanaszko, M.; Lichtor, S.; Mrksich, M.; Ameer, G.A. Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc. Natl. Acad. Sci. USA 2018, 115, 6816–6821. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Sigen, A.; Gao, Y.; Guo, L.; Creagh-Flynn, J.; Zhou, D.; Greiser, U.; Dong, Y.; Wang, F.; Tai, H.; et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018, 75, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, H.-T.; Chang, H.-M.; Lin, W.-J.; Hsu, Y.-T.; Mai, F.-D. Poly-Methyl Methacrylate/Polyvinyl Alcohol Copolymer Agents Applied on Diabetic Wound Dressing. Sci. Rep. 2017, 7, 9531. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Niu, L.; Liang, H.; Tan, H.; Liu, C.; Zhu, F. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2017, 9, 37563–37574. [Google Scholar] [CrossRef]
- Lai, J.C.-Y.; Lai, H.-Y.; Rao, N.K.; Ng, S.-F. Treatment for diabetic ulcer wounds using a fern tannin optimized hydrogel formulation with antibacterial and antioxidative properties. J. Ethnopharmacol. 2016, 189, 277–289. [Google Scholar] [CrossRef]
- Chen, H.; Guo, L.; Wicks, J.; Ling, C.; Zhao, X.; Yan, Y.; Qi, J.; Cui, W.; Deng, L. Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. J. Mater. Chem. B 2016, 4, 3770–3781. [Google Scholar] [CrossRef]
- Kamar, S.S.; Abdel-Kader, D.H.; Rashed, L.A. Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Ann. Anat.-Anat. Anz. 2018, 222, 94–102. [Google Scholar] [CrossRef]
- Yap, L.-S.; Yang, M.-C. Thermo-reversible injectable hydrogel composing of pluronic F127 and carboxymethyl hexanoyl chitosan for cell-encapsulation. Colloids Surf. B Biointerfaces 2019, 185, 110606. [Google Scholar] [CrossRef]
- Li, H.; Jia, Y.; Liu, C. Pluronic(R) F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron: Ex vivo and animal studies. Colloids Surf B Biointerfaces 2020, 195, 111259. [Google Scholar] [CrossRef]
- Cao, J.; Su, M.; Hasan, N.; Lee, J.; Kwak, D.; Kim, D.Y.; Kim, K.; Lee, E.H.; Jung, J.H.; Yoo, J.W. Nitric Oxide-Releasing Thermoresponsive Pluronic F127/Alginate Hydrogel for Enhanced Antibacterial Activity and Accelerated Healing of Infected Wounds. Pharmaceutics 2020, 12, 926. [Google Scholar] [CrossRef]
- Zahid, A.A.; Ahmed, R.; Rehman, S.R.U.; Augustine, R.; Tariq, M.; Hasan, A. Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. Int. J. Biol. Macromol. 2019, 136, 901–910. [Google Scholar] [CrossRef]
- Yokoyama, F.; Masada, I.; Shimamura, K.; Ikawa, T.; Monobe, K. Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym. Sci. 1986, 264, 595–601. [Google Scholar] [CrossRef]
- Figueroa-Pizano, M.D.; Vélaz, I.; Martínez-Barbosa, M.E. A Freeze-Thawing Method to Prepare Chitosan-Poly(vinyl alcohol) Hydrogels Without Crosslinking Agents and Diflunisal Release Studies. J. Vis. Exp. 2020, 155, e59636. [Google Scholar] [CrossRef] [PubMed]
- Takei, T.; Nakahara, H.; Tanaka, S.; Nishimata, H.; Yoshida, M.; Kawakami, K. Effect of chitosan-gluconic acid conjugate/poly(vinyl alcohol) cryogels as wound dressing on partial-thickness wounds in diabetic rats. J. Mater. Sci. Mater. Med. 2013, 24, 2479–2487. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Shi, X.; Sheng, K.; Han, G.; Li, W.; Zhao, Q.; Jiang, B.; Feng, J.; Li, J.; Gu, Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep. 2018, 19, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Keppler-Noreuil, K.M.; Parker, V.E.; Darling, T.; Martinez-Agosto, J.A. Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Am. J. Med. Genet. Part C Semin. Med. Genet. 2016, 172, 402–421. [Google Scholar] [CrossRef] [Green Version]
- Lao, G.; Yan, L.; Yang, C.; Zhang, L.; Zhang, S.; Zhou, Y. Controlled Release of Epidermal Growth Factor from Hydrogels Accelerates Wound Healing in Diabetic Rats. J. Am. Podiatr. Med. Assoc. 2012, 102, 89–98. [Google Scholar] [CrossRef]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef]
- Li, X.; Bai, H.; Yang, Y.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Adv. Mater. 2018, 31, e1805092. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Yang, R. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int. J. Biol. Macromol. 2015, 75, 378–387. [Google Scholar] [CrossRef]
- Hajimiri, M.; Shahverdi, S.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A.; Dehpour, A.R.; Amini, M.; Dinarvand, R. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev. Ind. Pharm. 2015, 42, 707–719. [Google Scholar] [CrossRef]
- Kamel, R.; El-Batanony, R.; Salama, A. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. Int. J. Pharm. 2019, 570, 118667. [Google Scholar] [CrossRef]
- Gil Park, Y.; Lee, I.H.; Park, E.S.; Kim, J.Y. Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model. Arch. Plast. Surg. 2017, 44, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Ekblad, T.; Faxälv, L.; Andersson, O.; Wallmark, N.; Larsson, A.; Lindahl, T.L.; Liedberg, B. Patterned Hydrogels for Controlled Platelet Adhesion from Whole Blood and Plasma. Adv. Funct. Mater. 2010, 20, 2396–2403. [Google Scholar] [CrossRef]
- Samberg, M.; Stone, R.; Natesan, S.; Kowalczewski, A.; Becerra, S.; Wrice, N.; Cap, A.; Christy, R. Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta Biomater. 2019, 87, 76–87. [Google Scholar] [CrossRef]
- Eppley, B.L.; Woodell, J.E.; Higgins, J. Platelet Quantification and Growth Factor Analysis from Platelet-Rich Plasma: Implications for Wound Healing. Plast. Reconstr. Surg. 2004, 114, 1502–1508. [Google Scholar] [CrossRef]
- El-Sharkawy, H.; Kantarci, A.; Deady, J.; Hasturk, H.; Liu, H.; Alshahat, M.; Van Dyke, T.E. Platelet-Rich Plasma: Growth Factors and Pro- and Anti-Inflammatory Properties. J. Periodontol. 2007, 78, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Chicharro-Alcántara, D.; Rubio-Zaragoza, M.; Damiá-Giménez, E.; Carrillo-Poveda, J.M.; Cuervo-Serrato, B.; Peláez-Gorrea, P.; Sopena-Juncosa, J.J. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J. Funct. Biomater. 2018, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Gallelli, G.; Cione, E.; Serra, R.; Leo, A.; Citraro, R.; Matricardi, P.; Di Meo, C.; Bisceglia, F.; Caroleo, M.C.; Basile, S.; et al. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int. Wound J. 2019, 17, 485–490. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güiza-Argüello, V.R.; Solarte-David, V.A.; Pinzón-Mora, A.V.; Ávila-Quiroga, J.E.; Becerra-Bayona, S.M. Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers 2022, 14, 2764. https://doi.org/10.3390/polym14142764
Güiza-Argüello VR, Solarte-David VA, Pinzón-Mora AV, Ávila-Quiroga JE, Becerra-Bayona SM. Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers. 2022; 14(14):2764. https://doi.org/10.3390/polym14142764
Chicago/Turabian StyleGüiza-Argüello, Viviana R., Víctor A. Solarte-David, Angie V. Pinzón-Mora, Jhair E. Ávila-Quiroga, and Silvia M. Becerra-Bayona. 2022. "Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment" Polymers 14, no. 14: 2764. https://doi.org/10.3390/polym14142764
APA StyleGüiza-Argüello, V. R., Solarte-David, V. A., Pinzón-Mora, A. V., Ávila-Quiroga, J. E., & Becerra-Bayona, S. M. (2022). Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers, 14(14), 2764. https://doi.org/10.3390/polym14142764